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1. INTRODUCTION

The character of magnetic ordering in artificial
two�dimensional arrays of single�domain ferromag�
netic particles, which is caused by their magnetostatic
interaction, depends substantially on the type of sym�
metry of the lattice formed by them [1]. The magnetic
properties of such systems were much studied both
theoretically [1–8] and experimentally [9–14]. It is
known that the ground state of a system of isotropic
dipoles located on a two�dimensional lattice with an
axis of symmetry higher than a diad axis is continu�
ously degenerate at zero temperature [4, 15]. For
example, the ground state of a triangular lattice is rep�
resented by the ferromagnetic ordering of dipoles that
is degenerate with respect to the angle between a mag�
netic moment vector and the lattice axes. The ground
state of a two�dimensional square lattice corresponds
to a microvortex magnetization distribution, and the
energy of this state is independent of the angle of incli�
nation of the magnetic moments of dipoles to the lat�
tice axes (Fig. 1a). The limitation imposed on the
number of possible magnetic configurations of a sys�
tem is caused by the fact that the magnetic moment is
constant at each lattice site. Thus, only collinear and
noncollinear commensurable magnetization distribu�
tions are possible in the systems formed by identical
dipoles [2, 3].

The behavior of the lattices the unit cell of which
contain at least two nonidentical particles is more
complex. Artificial spin ice is a well�known example of
such systems. This lattice is characterized by the fact
that its unit cell has two magnetic particles with differ�
ent easy magnetization axis directions [16]. The lat�
tices formed by magnetic particles of various sizes rep�
resent another possible method of forming systems
with a complex unit cell. In [17], we showed that an

incommensurate spiral distribution of magnetic
moments can exist in the one�dimensional case in
such a system.

In this work, we analytically and numerically study
the magnetic configurations of the two�dimensional
lattices of magnetic isotropic dipoles in the case where
a unit cell has two dipoles with different magnetic
moments, M(1) and M(2). In essence, such a system is a
two�dimensional dipole ferrimagnet. The mismatch
between the magnetic moments of the sublattices is
δ = (M(1) – M(2))/(M(1) + M(2)). In the case where the
dipoles are the same (δ = 0), the energy minimum cor�
responds to a microvortex state on a “dense” lattice
with translation vectors a1 = (1, 0) and a2 = (0, 1)
(Figs. 1a, 2) [1, 4]. Similarly, the microvortex state is
also a ground state in the case where one of the mag�
netic moments is zero (δ = 1), and dipoles in this case
are located on a “rotated” square lattice with transla�

tion vectors c1 = ( , ) and c2 = ( , – )
(Fig. 1h). In this work, we show that the transition
from one distribution to another induced by a change
in δ proceeds via sequential phase transitions between
the collinear and noncollinear phases.

The structure of the work is as follows. In the first
part, we describe a numerical model and the results of
micromagnetic simulation of the magnetization distri�
bution in the system under study. In the second part,
we used the trial function method to analytically
describe the phases detected in a numerical experi�
ment and showed that the detected phase transitions
are second�order phase transitions. The analytical
computations are described in detail in the Appendix. 
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2. SIMULATION OF THE MAGNETIC STATES 
OF A DIPOLE FERRIMAGNET

The system to be studied consists of two embedded
square lattices of dipoles having different total mag�
netic moments (Fig. 2). The site coordinates of the

first sublattice are designated as  = (ηxhx, ηyhy),
where η(i, j) is an integer vector. The sites of the sec�
ond lattice are shifted by vector d = (dx, dy) and, cor�

respondingly, have the coordinates  = (ihx + dx,
jhy + dy), and h = (hx, hy) is the interdipole distance in

rμ
1( )

rμ
2( )

the sublattice. In our case of two embedded square lat�

tices, we have dx = dy = hx/2 = hy/2. Let (t) =

M( , t) be the magnetic moment of a dipole at point

 and time t, where index l = 1, 2 designates the sub�
lattice number. Here, the modulus of the magnetic
moment in each sublattice is the same for all sites in

the same sublattice ( (t) = M(l)), and only a dipole
direction can change from site to site.

The magnetic states of the lattice of isotropic
dipoles were simulated using the SIMMAG software
package [18]. The simulation is based on a numerical
solution of a set of the Landau–Lifshitz equations

(1)

where γ is the gyromagnetic ratio, α is the dimension�

less attenuation parameter, and (t) = H( , t) is

the effective magnetic field at point  and time t. In

our calculations, we took γ = 1.76 × 107 Oe–1 s–1 and
α = 1. At zero temperature, the effective magnetic
field is represented by dipole field HD(r, t), which can
be calculated at any lattice site. When the problem is
solved at a finite temperature of the interaction of the
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Fig. 1. Phase configurations of the system at various values of parameter δ. Heavy and thin arrows indicate large and small dipoles
from the different sublattices. (a) microvortex state, δ = 0, T = 0; (b) first antiferromagnetic state, 0 < δ < 0.27, T ≠ 0; (c) noncol�
linear state, 0.27 < δ < 0.45; (d) ferromagnetic state, 0.45 < δ < 0.673; (e) “rotated” ferromagnetic state, 0.659 < δ < 0.868;
(f) parquet state, 0.868 < δ < 1; (g) second antiferromagnetic state, δ = 1, T ≠ 0; and (h) second microvortex state, δ = 1, T = 0.
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Fig. 2. Translation vectors of the total (a1 = (1, 0), a2 = (0,

1)) and rotated (c1 = ( , ), c2 = ( , – )) square
lattices. Crosses and dark points indicate the sites of sub�
lattices M1 and M2, respectively.
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system with a thermostat, the contribution of an addi�
tional term in the form of random field HT(r, t) to the
effective magnetic field is simulated [19]. Thermal
noise is delta�correlated in time and space,

(2)

where  = 2αkT/γM(l) is the Boltzmann constant,
and T is the temperature; the field has the form (see,
e.g., [19])

(3)

where ξ(r, t) is the random quantity having a normal
distribution with zero mean and unit variance and Δt is
the time step of the numerical integration of the Lan�
dau–Lifshitz equation.

The field creating by all dipoles at point rμ has the
form

(4)

where (r) is the dipole matrix, and the first and sec�
ond terms in the right�hand side of Eq. (4) describe the
magnetic fields that are responsible for the interaction
of dipoles inside one sublattice and between the sub�
lattices, respectively. Since it is impossible to perform
a numerical simulation of arbitrary magnetic moment
distributions over an infinite lattice, we consider peri�

odic distributions of magnetic moment (t) with
period vector N = (Nx, Ny) so that

where nx and ny are integers. Note that our numerical
simulations show that the result is independent of the
period at N > 10. In this case, the magnetostatic field
can be represented as

(5)

where
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Note that matrix (r) is periodic with period N.
When calculating this matrix, we replaced an infinite
sum by a finite one by choosing the number of terms so
that the energy system was independent of this num�
ber. A similar procedure was applied in [20]. In our
calculations, we restricted ourselves to 64 terms in the
sum.

It is convenient to calculate the magnetostatic field
using the fast Fourier transform. In this case, the field
can be represented as

(6)

where (q) and (q) are the Fourier transforms of

the total dipole matrices and (q) are the Fourier
transforms for the distribution of the magnetic
moments in the system. We have

(7)

(8)

(9)

where rμ changes within the period of the magnetic
moment distribution.

Thus, the calculation of the magnetostatic field of
two embedded rectangular lattices of dipoles is
reduced to a single computation of the Fourier trans�

forms of total dipole matrices (r) and (r + d),
the computation of the Fourier transform of the mag�
netic moments, the multiplication of the obtained
Fourier transforms, and the computation of the
inverse Fourier transform. This procedure signifi�
cantly accelerates the calculations.

The major portion of the numerical simulation was
executed for a system of periodic distribution with a
period of 10 × 10 cells, with each of which containing
two different dipoles. The first sublattice contained
dipoles with a magnetic moment of 4.2 × 10–18 erg/G,
which approximately corresponded to the magnetic
moment of a particle 1 nm in radius with a magnetiza�
tion of 1000 G. The magnetic moments of the dipoles
located in the second sublattice were changed from
4.2 × 10–18 erg/G to zero, which corresponded to the
variation of δ from zero to unity. The dipoles were
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assumed to be isotropic. The interdipole distance in
the sublattice was hx = hy = 2 nm. The sites of the sec�
ond square lattice were placed exactly at the centers of
the cells of the first sublattice. We studied the configu�
rations of magnetic moments that correspond to the
ground states over the entire δ range.

The algorithm of simulating the magnetic moment
distribution in the system was as follows. The system is
relaxed to a ground antiferromagnetic state starting
from a random distribution of magnetic moments over
the sublattices at δ = 0. The system then passed
through the entire chain of ground states in the range
δ = 0–1 when the mismatch of magnetic moments δ
was changed and relaxation was performed at each
step. The calculations were carried out at a finite
amplitude of the thermal field corresponding to a tem�
perature T = 0.01–0.05 K for a perturbation to be
introduced into the system and a magnetic moment
distribution to be restructured when parameter δ was
changed. The state energy was calculated at zero tem�
perature.

Figure 1 shows stationary magnetic moment distri�
butions at various values of mismatch parameter δ.
The simulation showed that the states of the system at
various values of mismatch δ are independent of both
period N = (Nx, Ny) and the sublattice step.

In the case of δ = 0, the magnetic moments of the
dipoles from different sublattices are the same, and the
system represents a simple square lattice of identical
dipoles. In the case of zero temperature, the initial
random distribution of dipoles relaxes into the micro�
vortex state that is degenerate in the angle between
magnetic moments and the lattice axes (Fig. 1a),
which completely agrees with the well�known data in
[4]. When a finite temperature is “turned on,” the sys�
tem transforms into an antiferromagnetic state, where

dipoles are arranged along the side of the “dense”
square lattice (Fig. 1b). Note that this antiferromag�
netic state is a particular case of the microvortex state
[1, 4]. The splitting of the microvortex state because of
thermal fluctuations and the transition of the system
into an antiferromagnetic state were predicted in [15,
21] and explained by the fact that the spectrum of
spin�wave fluctuations near the ground state λ(k)
depends on microvortex angle ϕ. As a result, the cor�
responding contribution to the free energy of the sys�
tem is also a function of angle ϕ, and its maximum is
reached exactly in the antiferromagnetic ordering of
dipoles. Thus, our numerical model adequately
describes this phenomenon.

As mismatch δ increases, the antiferromagnetic
state remains stable up to a critical value δc1 = 0.27.
When this critical value is exceeded, a state that can be
called noncollinear appears, since the angles of devia�
tion are different for the sublattices of “large” and
“small” dipoles (Fig. 1c). Figure 3 shows the appear�
ing perpendicular components of the magnetic
moments versus the mismatch parameter. In essence,
the transition consists in the fact that a ferromagnetic
moment with an average magnetization directed nor�
mal to the initial direction of magnetic dipoles appears
in the system against the background of antiferromag�
netism. This phase transition substantially resembles
the topological spin�flop transition that is observed in
an external magnetic field during a numerical simula�
tion of a system of magnetic dipoles with an in�plane
magnetization and a rather weak anisotropy in the
basal plane [22].

This phase transition is a second�order phase tran�
sition, and the order parameter is represented by the
component of the average magnetic moment of the
sublattice directed normal to the antiferromagnetism
vector in the initial antiferromagnetic state. The phase
transition is characterized by critical behavior of the
type My ≈ (δ – δc)

ν, δc = δc1. The analytical curve cal�
culated by the trial function method (see Section 3)
and the data obtained in a numerical experiment give
a critical index ν = 1/2 (Fig. 3). The values of the crit�
ical index coincide for both sublattices.

As the mismatch between the magnetic moments
of the sublattices increases, the angles of deviation
increase and the system transforms into a ferromag�
netic state at the second critical value (δc2 = 0.45).
At zero temperature, this state is uniformly angle
degenerate and a numerical calculation gives the same
energies of the system irrespective of the magnetiza�
tion direction of the system. Nevertheless, the ferro�
magnetic state in which all dipoles are directed along
the diagonal of the sublattices normal to the antiferro�
magnetism vector in the initial ferromagnetic state at
δ = 0 always forms at zero temperature in a numerical
experiment at δ < 0.659 (Fig. 1d). This unambiguous
selection of the magnetization direction in the ferro�
magnetic state is likely to be related to the splitting of
the ground state because of thermal spin�wave fluctu�

0.2

0.4

My/Ms

0.34

1.0

δ

0
0.20 0.27 0.41 0.48

0.6

0.8

Fig. 3. Curve My/Ms describing the average normalized
ferromagnetic moment of a sublattice at the values of δ
corresponding to antiferromagnetic, noncollinear, and
ferromagnetic states: (round and square symbols) numeri�
cal simulation data for large and small dipoles, respec�
tively; (solid lines) corresponding analytical relations
obtained using trial functions.
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ations, similarly to the case of the ground microvortex
state at δ = 0 [15, 21]. At δ > δc3 = 0.673, the state
remains antiferromagnetic but the dipoles rotate
through an angle of 45° and are oriented along the cell
side in the square sublattice (Fig. 1e). This behavior is
associated with the fact that, as δ increases, the free
energy of the state with dipoles oriented along the side
of the square cell becomes lower than the free energy
of the state with dipoles oriented along its diagonal. In
the range 0.659 < δ < 0.673, the free energies of all fer�
romagnetic states are close to each other and the relax�
ation times increase even at a nonzero temperature,
which makes it impossible to find the boundary
between the two ferromagnetic states under study
more exactly under numerical experiment conditions.
As the mismatch parameter increases further, the fer�
romagnetic state remains stable up to δc4 = 0.868.

In the range 0.868 < δ < 1, a parquet�like configu�
ration of magnetic dipoles forms (Fig. 1f). It is charac�
terized by the fact that the initial ferromagnetic order�
ing is retained in the small�dipole sublattice and that
an “antiferromagnetic” order with a perpendicularly
directed antiferromagnetism vector appears in the
large�dipole sublattice against the background of the
retained ferromagnetic ordering. A numerical simula�
tion shows a linear relation between the average mag�
netization of the large�spin sublattice and parameter δ
over the entire range of this phase (Fig. 4). As δ
increases, large dipoles rotate in an antiferromagnetic
manner more intensely. In this case, the order param�
eter is represented by the antiferromagnetism vector
appearing the large�spin sublattice. A numerical sim�
ulation gives the relation L ≈ (δ – δc4)

0.5 for this order
parameter; that is, the critical index is 1/2. At δ = δc5 =
1 (where the value of the small dipoles becomes zero),
the large�dipole sublattice reaches the ideal antiferro�
magnetic ordering that should take place in a simple
square lattice (Fig. 1g). In this case, the order param�
eter is represented by the ferromagnetic component of
the average magnetic moment of the large�dipole sub�
lattice. Since it linearly depends on δ, the critical
index at the phase�transition point at δ = δc5 = 1 is 1.
Both phase transitions at d = δc4 = 0.868 and δ = δc5 = 1
are second�order phase transitions.

3. DISCUSSION

The character of the orientation ordering of a
dipole system in the ground state is determined by the
minimum of the magnetostatic dipole–dipole interac�
tion energy

(10)E Dik R R '–( )Mi R( )Mk R '( ).
R R '≠

∑=

In the dipole approximation, the components of the
magnetostatic interaction tensor are

(11)

and subscripts i, k = x, y number the Cartesian coordi�
nate axes. We also determine the Fourier transforms of
magnetostatic tensor components (11),

Vector M changes according to the law  = M(1 +
δexp(ib ⋅ R)), where M = (M(1) + M(2))/2 is the average
magnetic moment of two dipoles in the unit cell, R =
na1 + la2 (n, l = 0, ±1, …) are two�dimensional lattice
sites, b = b1 + b2 is the reciprocal lattice vector that
meets the condition bi ⋅ ak = πδik, and δik is the Kro�
necker delta.

The expression for the energy acquires the form

(12)

where the dipole orientation is described by two�
dimensional vectors m(R), which lie in the lattice plane
and meet the normalization condition m2(R) = 1. The
numerical simulation data can be used to choose rela�
tively simple trial functions and to analyze the phase
transitions occurring over the entire δ range. Any of
the states observed in the numerical experiment can be
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Fig. 4. Average (�) ferromagnetic and (�) antiferromag�
netic moments of the large�dipole sublattice in a parquet
configuration that were obtained during numerical simula�
tion: (solid lines) corresponding analytical relations found
using trial functions.
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described using a four�sublattice trial function, which
has the following form for states (a)–(c) in Fig. 1:

(13)

Unit vectors dj and ej are directed along the mag�
netic moments of large and small dipoles, respectively,
the orientations of which are designated by angles ϕj
and χj and subscript j = 1, 2 indicates the magnetic
sublattice number (Fig. 5a)

(14)

States (f)–(h) in Fig. 1 can be described by another
trial function with the following set of sublattices
(Fig. 5b):

m R( )
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The orientations of the unit vectors along the sub�
lattice magnetizations are determined by angles ψ±

and ξ± for large and small dipoles, respectively
(Fig. 5b),

(16)

States (d) and (e) in Fig. 1 can be described by any of
these functions due to their higher symmetry. The
symmetry of the magnetization distribution in the
detected states makes it possible to introduce addi�
tional relations for the values of angles ϕj, χj, ψ±, and
ξ± given in the table. Note that trial function (13) con�
tains the microvortex solution (Fig. 1a), which corre�
sponds to a set of parameters χ1 = –ϕ1, ϕ2 = ϕ1 + π,
and χ2 = χ1 + π and a ferromagnetic phase degenerat�
ing with respect to the orientation to the crystallo�
graphic axes in a continuous manner. The parquet
state is described by the introduction of the following
three sublattices: a sublattice uniformly magnetized
along the diagonal of the small�dipole sublattice and
two canted large�dipole sublattices embedded into
each other at angle 2ξ between the magnetic moment
directions.

The minimization of the system energy using trial
functions (13) (calculation system is described in
detail in Appendix) leads to root dependences of vari�
ational parameters ϕ(δ) and χ(δ) near the point of the
phase transition from the antiferromagnetic into the

noncollinear state, ϕ = ϕ0(δc1)  and χ =

χ0(δc1) . The expressions for ϕ0 and χ0 are
combinations of the magnetostatic tensor components
at the symmetric points of the Brillouin zone and are
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Fig. 5. Sequential noncollinear states that occur on a
square lattice when the mismatch between the dipole
moments increases.

Angles ϕ1, 2, χ1, 2, ψ±, and ξ± corresponding to various magnetic distributions
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Microvortex (Fig. 1a) ϕ π + ϕ –ϕ π – ϕ – – – –

Antiferromagnetic at δ = 0 (Fig. 1b) π 0 π 0 – – – –

Noncollinear (Fig. 1c) π – ϕ ϕ π – χ χ – – – –
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2nd ferromagnetic (Fig. 1e) 0 0 0 0
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awkward. We do not write them explicitly here and
only present their calculated values corresponding to
the energy minimum, ϕ0 ≈ 2.7848 and χ0 ≈ 1.8519. The
critical value of mismatch parameter δc1 at which the
antiferromagnetic ordering is broken has the form

(17)

At the symmetric points of the Brillouin zone, we have
Sxx(0) = Syy(0) ≡ S(0), Sxx(b) = Syy(b) ≡ S(b), Sxx(b1) =
Syy(b2) ≡ S(b2), and Sxx(b2) = Syy(b1) ≡ S(b1) for the
Fourier transforms of the magnetostatic tensor com�
ponents.

In the dipole approximation (S(0) ≈ –4.5168,
S(b) ≈ 1.3229, S(b1) ≈ –5.0989, S(b2) ≈ 6.0343 [1, 4]),
we obtain δc1 ≈ 0.2742. At δ > δc1 ≈ 0.2742, the antifer�
romagnetic structure begins to distort and a weak fer�
romagnetic order appears in the system.

The expansion of the system energy in the vicinity
of the phase�transition point has the form

(18)

where

is the energy of the antiferromagnetic ordering of mag�
netic moments. Coefficient α is estimated to be α ≈
6.0208. Note that the behavior of energy (18) near
critical parameter δc1 corresponds to the criterion of
second�order phase transitions.

When the mismatch between the magnetic
moments of the sublattices increases gradually, the
magnetic moments rotate so that the system trans�
forms into a ferromagnetically ordered state at δ = δc2
(Fig. 1d). Here, we have

(19)

In the vicinity of critical parameter δ = δc2, the canting
angles are ϕ = π/2 –  and χ = π/2 – , where  =

ϕ1  and  = χ1 . The calculation of
parameters ϕ1 and χ1 at which the energy is minimal
results in the values ϕ1 ≈ 1.9949 and χ1 ≈ 2.9997.

The expression for the energy near the transition
into a homogeneous ferromagnetic state is also a qua�
dratic function of deviation δ – δc2,

(20)

where EF is the ferromagnetic state energy,

Parameter β is calculated to be β ≈ 3.6632. This phase
transition is also a second�order phase transition.

It is well known that the character of ordering in
two�dimensional magnetic dipole lattices is deter�
mined by the sign of interaction of two dipole chains.

δc1
2 S 0( ) S b1( )–( ) S b( ) S b1( )–( )

S 0( ) S b2( )–( ) S b( ) S b2( )–( )
����������������������������������������������������������.=

E EAF≈ α δc1( )M2 δ δc1–( )2
,–

EAF
M2

2
����� S b( ) δ2S b2( )+( )=

δc2
2 S 0( ) S b1( )–( ) S 0( ) S b2( )–( )

S b( ) S b1( )–( ) S b( ) S b2( )–( )
���������������������������������������������������������� 0.4506.≈=

ϕ̃ χ̃ ϕ̃

δc2 δ– χ̃ δc2 δ–

E EF M2β δc2( ) δ δc2–( )2
,–≈

EF
M2

2
����� S 0( ) δ2S b( )+( ).=

In the case where the chains consist of alternating
dipoles of different values, the energy of their interac�
tion depends on the mismatch between the magnetic
moments and has the form 8π2M2exp(–π)[exp(–π) –
δ2/23/2]. Thus, the interaction energy changes its sign
at δ = δ0 ≈ 0.3496; that is, the chains interact antifer�
romagnetically at δ < δ0 and ferromagnetically at
δ > δ0. Obviously, noncollinear states cannot appear in
the system of two chains under study; as a result, the
antiferromagnetic ordering at δ = δ0, where δc1 < δ0 <
δc2, transforms directly into a ferromagnetic order. It is
obvious that the restructuring of the magnetic
moments in a square lattice is related to a change in
the character of the interchain interaction in the sys�
tem. Indeed, large magnetic moments in the noncol�
linear state are rotated through a higher angle as com�
pared to the initial antiferromagnetic state, whereas
small magnetic moments are rotated through a lower
angle (Fig. 3). Correspondingly, the mismatch
between the projections of the magnetic moments of
different sublattices onto the horizontal axis remains
small (Fig. 1c), whereas the mismatch between the
corresponding projections onto the vertical axis is sub�
stantially larger. Thus, antiferromagnetic interaction is
retained between the horizontal dipole chains, while
the interaction between the vertical chains is ferro�
magnetic. As a result, a noncollinear state becomes
energetically favorable. It is interesting that the mis�
matches between the projections of the spins of differ�
ent sublattices onto the vertical and horizontal axes,

which are calculated as δx = (  – )/(  +

) and δy = (  – )/(  + ), remain

constant over the entire δ range corresponding to the
noncollinear phase and are δx = δc1 ≈ 0.275 and δy =
δc2 ≈ 0.452. It is obvious that δx < δ0 and δy > δ0, which
corresponds to an antiferromagnetic interaction
between the horizontal chains and a ferromagnetic
interaction between the vertical chains.

As discussed above, a further increase in parameter
δ leads to the transformation of the system into a fer�
romagnetic state along the lattice diagonal. Then, the
sublattice of the dipoles with a higher moment forms a
structure consisting of two canted lattices inserted into
each other at angle 2ξ between them, whereas the
small dipoles retain ferromagnetic ordering (see
Fig. 1f). When mismatch parameter δ exceeds the crit�
ical value δ ≥ δc3, where

(21)

Mx
1( ) Mx

2( ) Mx
1( )

Mx
2( ) My

1( ) My
2( ) My

1( ) My
2( )

δc3
S b/2( ) S 0( )– Sxy b/2( )–
S b( ) S b/2( )– Sxy b/2( )+
��������������������������������������������������� 0.8683,≈=
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variational parameter ξ, the cosine of which deter�
mines the unit vector along the ferromagnetism vector,
is found from the expression

(22)

In the vicinity of the phase�transition point, angle
ξ obeys a root dependence on the distance from the
critical point, which coincides with the numerical
simulation data,

The energy of the three�sublattice structure under
study decreases with respect to uniform ordering and is

(23)

When the value δc4 = 1 is reached, we pass to a sim�
ple square lattice of identical dipoles with an antiferro�
magnetic order, with the antiferromagnetism vector
being oriented normal to the initial ferromagnetism
vector.

Thus, we considered the system in which magnetic
particles have different dipole moments and are
arranged in a staggered order on a square lattice. Using
a numerical simulation, we studied the change of the
magnetic configurations in the system and the charac�
ter of the phase transitions between them that are
caused by a change in the mismatch between the
dipoles. It was shown that all phase transitions
between sequential collinear and noncollinear states
are second�order phase transitions and that the behav�
ior of the order parameters is described by relations of

the type α , where coefficient α is a numerical
constant and the critical index is ν = 1/2. Note that the
developed numerical model can be used to adequately
simulate the fluctuation phase transition that removes
the degeneracy of the ground microvortex state in a
zero magnetic field and to predict a change in the ori�
entation of the ferromagnetic ordering in a ferromag�
netic phase, which is likely also to be related to a spin�
wave contribution to the system energy at zero tem�
perature. The numerical simulation results were sup�
ported by analytical computations using trial func�
tions, and the calculated phase characteristics of the
system agree very well with the numerical simulation
results.

ξcos S b( ) S 0( )–
S 0( ) S b( ) 2S b/2( )– 2Sxy b/2( )+ +
�����������������������������������������������������������������������=

× 1 δ–
1 δ+
���������� 14.18871 δ–

1 δ+
����������.≈

ξ 2
1 δc3+
������������� S b( ) S 0( )–

S 0( ) S b( ) 2S b/2( )– 2Sxy b/2( )+ +
�����������������������������������������������������������������������≈

× δ δc3– 4.0323 δ δc3– .≈

E EF M2 1 δ+( )2

8
��������������� S 0( ) S b( )��+⎝

⎛–=

– 2S b
2
��⎝ ⎠
⎛ ⎞ 2Sxy

b
2
��⎝ ⎠
⎛ ⎞

⎠
⎞ 1 ξcos–( )2

.+

δ̃ δc–
ν

APPENDIX

Using the transition from an antiferromagnetic
into a noncollinear state as an example, we describe a
method for calculating the variational system parame�
ter. Energy (12) written with trial functions (13) is
written as

(24)

As the solution, we chose the function that describes
the noncollinear state (see Fig. 1c). Owing to symme�
try, we can choose two angles related as

(25)

(26)

instead of four independent angles. Substituting
Eqs. (25) and (26) into Eq. (24), we obtain the expres�
sion

(27)

to determine the values of variational parameters χ
and ϕ from its minimum. At low values of parameter δ,
an antiferromagnetic state (ϕ = χ = 0) corresponds to
the minimum of energy (27). The condition of stabil�
ity of this state is a positive value of the quantity

(28)

Correspondingly, the critical value of mismatch
parameter δc1 at which the antiferromagnetic ordering
is broken is

(29)

E M2

8
����� 1 δ2+( ) S 0( ) S b( ) S b1( ) S b2( )+ + +( )=

+ M2

16
����� 1 δ+( )2 ϕ1 ϕ2–( )cos 1 δ–( )2 χ1 χ2–( )cos+[ ]{

× S 0( ) S b( ) S b1( )– S b2( )–+( )

+ 1 δ2–( ) ϕ1 χ1–( )cos ϕ1 χ2–( )cos+[

+ ϕ2 χ1–( )cos ϕ2 χ2–( ) ] S 0( ) S b( )–( )cos+

+ 1 δ2–( ) ϕ1 χ1+( )cos ϕ1 χ2+( )cos–[

– ϕ2 χ1+( )cos ϕ2 χ2+( ) ] S b1( ) S b2( )–( ) }.cos+

ϕ2 ϕ, ϕ1 π ϕ,–= =

χ2 χ, χ1 π χ–= =

E M2

8
����� 1 δ2+( ) S 0( ) S b( ) S b1( ) S b2( )+ + +( )=

+ M2

16
����� 1 δ+( )2 2ϕ( )cos 1 δ–( )2 2χ( )cos+[ ]–{

× S 0( ) S b( ) S b1( )– S b2( )–+( ) 2 1 δ2–( )+

× χ ϕ–( ) S 0( ) S b( )– S b1( ) S b2( )–+( )cos 2 1 δ2–( )–

× χ ϕ+( ) S 0( ) S b( )– S b1( )– S b2( )+( ) }cos

ΔAF
∂2E

∂ϕ2
�������∂

2E

∂χ2
������� ∂2E

∂ϕ∂χ
�����������⎝ ⎠
⎛ ⎞

2

–⎝ ⎠
⎛ ⎞

ϕ 0; χ 0= =

=

=  M
2

4
����� 1 δ2–( ) S 0( ) S b1( )–( ) S b( ) S b1( )–( )[

– δ2 S 0( ) S b2( )–( ) S b( ) S b2( )–( ) ].

δc1
2 S 0( ) S b1( )–( ) S b( ) S b1( )–( )

S 0( ) S b2( )–( ) S b( ) S b2( )–( )
����������������������������������������������������������,=
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from which we have δc1 ≈ 0.2742. When expanding
Eq. (28) in the first order near the phase�transition
point (δ ≈ δc1), we obtain

(30)

where

Obviously, the ratio ΔAF/ΔAF0 plays the role of temper�
ature in the theory of phase transitions and character�
izes the closeness to the critical point. At δ > δc1 ≈
0.2742, the antiferromagnetic structure begins to dis�
tort and a weak ferromagnetic order appears in the sys�
tem.

In the first order in parameter ΔAF, the behavior of
functions ϕ(δ) and χ(δ) near the transition point is
described by the set of equations

which can be reduced to the form

(31)

where AAF, BAF, and CAF  are the second partial deriv�
atives of the energy with respect to parameters ϕ and χ
that are calculated at the point of antiferromagnetic
ordering,

Since ΔAF ~ δc1 – δ near the transition, we assume δ =
δc1 and search for the solution to set (31) in the form

ϕ = ϕ0(δc1)  and χ = χ0(δc1) . The
expressions for ϕ0 and χ0 are combinations of the mag�
netostatic tensor components at the symmetric points
of the Brillouin zone and are awkward. We do not write
them explicitly here and only present their numerical
estimates corresponding to the energy minimum, ϕ0 ≈
2.7848 and χ0 ≈ 1.8519.

ΔAF ΔAF0 δc1( ) δc1 δ–( ),≈

ΔAF0 δc1( ) M4

2
�����δc1 1 δc1

2–( )=

× S 0( ) S b2( )–( ) S b( ) S b2( )–( ).

∂E
∂ϕ
����� 0,=

∂E
∂χ
����� 0,=⎩

⎪
⎨
⎪
⎧

8δΔAFϕ AAF BAF–( ) ϕ2 χ2–( )=

× BAF 1 δ+( )2ϕ CAF 1 δ–( )2χ+( ),

8δΔAFχ AAF BAF–( ) χ2 ϕ2–( )=

× CAF 1 δ+( )2ϕ AAF 1 δ–( )2χ+( ),

AAF
∂2E

∂ϕ2
�������

ϕ 0 χ, 0= =

, BAF
∂2E

∂χ2
�������

ϕ 0 χ, 0= =

,= =

CAF
∂2E
∂ϕ∂χ
�����������

ϕ 0 χ, 0= =

.=

δ δc1– δ δc1–

To reveal the character of the transition, we expand
energy (27) at the vicinity of the phase�transition point
with allowance for set (31),

(32)

Here,

is the energy of the antiferromagnetic ordering of the
magnetic moments. Using the shape of the ϕ(δ) and
χ(δ) curves near δc1, we can write the energy in the
form

(33)

Coefficient α is calculated to be α ≈ 6.0208. Note that
the form of energy (32) corresponds to the criterion of
second�order phase transitions.
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