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Suppression of Timing Errors in Short Overdamped Josephson Junctions
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The influence of fluctuations and periodical driving on temporal characteristics of short overdamped
Josephson junctions is analyzed. We obtain the standard deviation of the switching time in the presence
of a dichotomous driving force for arbitrary noise intensity and in the frequency range of practical
interest. For sinusoidal driving the resonant activation effect has been observed. The mean switching
time and its standard deviation have a minimum as a function of driving frequency. As a consequence
the optimization of the system for fast operation will simultaneously lead to the minimization of timing
errors.
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The rapid single flux quantum (RSFQ) electronic de-
vices [1] are promising candidates to built a petaflop
computer [2] due to the high operating frequencies of
RSFQ elements close to 1 THz. Moreover, they are of
particular interest in solid-state quantum information
processing: the RSFQ circuitry may be used both for
the realization of qubits and for the characterization of
a macroscopic quantum behavior, e.g., readout electronics
for quantum computing [3]. It is known that the processes
going on in RSFQ devices are based on a reproduction of
quantum pulses due to spasmodic changing by 2� of the
phase difference of damped Josephson junctions (JJ). The
major restriction in the development of RSFQ logic cir-
cuits is given by the influence of fluctuations [1,4].
Recently lots of investigations were performed to study
pulse jitter and timing errors in RSFQ circuits [5,6].
Timing errors is one of reasons, limiting a 16-bit RSFQ
microprocessor prototype [2] clock frequencies to
20 GHz instead of the theoretically predicted hundreds
of gigahertz. Therefore, investigation of possible ways for
suppression of pulse jitter of transmitting signals is a very
important problem from a fundamental and a technologi-
cal point of view and is also characteristic for different
branches of physics, where a nonlinear element is driven
either from an external source or from another element, as
in neural networks.

For RSFQ circuits three different types of digital er-
rors may be identified [5]. First, storage errors may oc-
cur during the passive storage of data: fluctuations can
induce a 2� phase flip and thus switch the quantizing
loop into the neighboring flux state. The analytical de-
scription of the mean time of such noise-induced flips,
valid for arbitrary noise intensity, has been presented in
[7]. Second, decision errors may be produced in the two
junction comparator. This situation has been studied in
detail in the linearized overdamped JJ model [8]. If
an RSFQ circuit operates at high speed, another type of
noise-induced error becomes important. Because of
noise, the time interval between input and output pulses
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fluctuates. This type of error is called a ‘‘timing’’ error.
Timing errors have also been studied in the linearized
overdamped JJ model and with the assumption of instant
change of external signals [5]. It is known that in a non-
linear system with a metastable state and noise the reso-
nant activation (RA) effect [9–11] and noise enhanced
stability (NES) [7,12] may be observed. These effects
may play positive and negative role in the accumulation
of fluctuational errors in RSFQ logic devices: the RA
phenomenon minimizes timing errors, while the NES
phenomenon increases the switching time. These effects,
however, were not still observed in previous investiga-
tions due to the use of linearized models [5,8]. Moreover,
the limiting frequencies of RSFQ devices and possible
optimizations, in order to increase working frequencies
and reduce timing errors in RSFQ circuits, is an open
question.

This Letter is aimed at answering this question by
investigating nonlinear noise properties of an over-
damped JJ, subjected to periodic driving, to understand
possible ways of RSFQ circuits optimization for high-
frequency operation with minimal timing errors. To this
end, we consider the dynamics of a short overdamped JJ,
under a current I, given by the Langevin equation [4]:

!�1
c

d’�t�
dt

� �
du�’�
d’

� iF�t�; (1)

u�’� � 1� cos’� i�t�’; i�t� � i0 � f�t�; (2)

where ’ is the order parameter phase difference, u�’� is
the dimensionless potential profile, f�t� is the driving
signal, i � I=Ic, with Ic the critical current, and iF�t� �
IF=Ic, with IF the random component of the current. Here
!c � 2eRNIc= �h is the characteristic frequency of the JJ,
RN is the normal state resistance of a JJ, e is the electron
charge, and �h is the Planck constant. Let us consider only
thermal fluctuations, then the random current may be
represented by the white Gaussian noise: hiF�t�i � 0,
hiF�t�iF�t� ��i � 2�����=!c. Here � � 2ekT=� �hIc� is
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FIG. 1. The MST ��!�and SD ��!� as functions of frequency
for dichotomous driving, for two values of noise intensity: � �
0:2; 0:02, and i0 � 0:5, i � 1:5. The results of computer simu-
lations are ��!� (solid line) and ��!� (diamonds and circles).
Dashed lines are theoretical results (5) and (8).
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the dimensionless noise intensity, T is the tempera-
ture, and k is the Boltzmann constant. Let, initially, the
JJ be biased by a current smaller than the critical one
(i0 < 1), and the junction is in the superconductive state.
The current pulse f�t�, such that i�t� � �i0 � f�t�	> 1,
switches the junction into the resistive state. However, an
output pulse will be born not immediately, but at the later
time. Such a time is the switching time [4], and, due to
fluctuations, is a random quantity and may be character-
ized by its mean value and standard deviation. As an
example of a driving with sharp fronts, we consider the
dichotomous signal f�t� � A sgn�sin�!t�	, and as an ex-
ample of a driving with smooth fronts—sinusoidal signal
f�t� � A sin�!t�. In spite that we consider the periodic
driving, which makes the results more evident, it is ob-
vious that below the cutoff frequency the switching oc-
curs during half of the first period, so other periods are
not important. Besides, our adiabatic analysis may easily
be generalized to an arbitrary form of f�t�. In computer
simulations we set !c � 1 and, therefore, in plots ! is
normalized to !c.

Let us investigate the mean switching time (MST) and
its standard deviation (SD). These quantities may be in-
troduced as characteristic time scales of the evolution of
the probability P�t� �

R
’2
’1

W�’; t�d’ to find the phase
within one period of the potential profile (2). Therefore
we choose ’2 � �, ’1 � ��, and the initial distribution
at the bottom of a potential well, i.e., ’0 � arcsin�i0�. The
mean switching time and the standard deviation are

� � hti �
Z 1

0
tw�t�dt; � �

���������������������
ht2i � hti2

q
;

w�t� �
@P�’0; t�

@t�P�’0;1� � P�’0; 0�	
:

(3)

Let us first consider the case of dichotomous driving,
f�t� � A sgn�sin�!t�	. From the Langevin Eq. (1), we
calculate the MST and its SD. In Fig. 1 we report the
behaviors of MST ��!� and SD ��!� versus driving
frequency for two values of noise intensity: � � 0:2;
0:02. For dichotomous driving both MST and its SD do
not depend on the driving frequency below a certain
cutoff frequency, above which the characteristics degrade.
In the frequency range 0–0:2!c, therefore, we can de-
scribe the effect of dichotomous driving by time charac-
teristics in a constant potential. The exact analytical
expression of MST and its asymptotic expansion are, for
arbitrary �, [7]
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and for � � 1
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(5)
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Following Ref. [11], the exact expression for �2c � ht2i in
a time-constant potential may be derived as
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where H�x� �
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and �c�’0� is given by (4). The asymptotic expression of
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in the small noise limit � � 1 is
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The comparison between the asymptotic theoretical re-
sults [Eqs. (5) and (8)] and simulations is reported in
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Fig. 1. The agreement is very good within the frequency
range 0–0:2!c. It is interesting to see that the SD of the
switching time scales as the square root of noise intensity.
The dependencies of the MST and its SD on the bias
current are presented in Fig. 2 for � � 0:001. The agree-
ment between theoretical results and simulations is very
good for all the bias current values investigated. In the
low noise limit, Eq. (5) actually gives the same results as
presented in [5], since the largest contribution to the MST
comes from the deterministic term �c�’0� �

1
!c
ff1�’2� �

f1�’0�g. However, formula (8), in some cases, signifi-
cantly deviates from the results of linearized calculations
[5]. For the case � � 0:001, the authors of [5] have got
� � 0:4!�1

c for i � 1:2, while we get � � 0:436!�1
c , but

for larger current i � 1:5 the discrepancy is larger: � �
0:06!�1

c in [5], and we get � � 0:14!�1
c . In the inset of

Fig. 2 we report the behavior of SD, Eq. (8), as a function
of noise intensity �, for i � 1:2 and i � 1:5. The agree-
ment with computer simulations is very good for noise
intensity values up to � � 0:05. Therefore not only low
temperature (� � 0:001) but also high temperature de-
vices may be described by Eqs. (5) and (8). If noise
intensity is rather large, the phenomenon of NES may
be observed: the MST increases with the noise intensity,
as it may be easily seen from Eq. (5). In the design of
large arrays of RSFQ elements, operating at high fre-
quencies, it is very important to consider this effect;
otherwise it may lead to malfunctions due to the errors
accumulation.

Now let us consider the case of sinusoidal driving
f�t� � A sin�!t�. The corresponding time characteristics
may be derived using the modified adiabatic approxima-
tion [10,11]

P�’0; t� � exp
�
�
Z t

0

1

�c�’0; t0�
dt0

�
; (9)
FIG. 2. The MST and SD versus bias current for the time-
constant case for � � 0:001. Solid lines, formulas (5) and (8);
diamonds and circles, results of computer simulation. Inset: the
SD versus noise intensity for the time-constant case (i > 1).
Solid line, formula (8); circles, results of computer simulation
for i � 1:5; dashed line, formula (8); diamonds, results of
computer simulation for i � 1:2.
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where �c�’0; t
0� is given by (4). While for the case of

dichotomous driving the value of initial current i0 has a
weak effect on temporal characteristics in agreement with
[5], for the case of sinusoidal driving the value of i0 is
more important, since it also defines the potential barrier
height.We focus now on the current value i � 1:5, because
i � 1:2 is too small for high-frequency RSFQ applica-
tions. In Fig. 3 the MST as a function of the driving fre-
quency for different values of bias current i0 � 0:5; 0:8 is
shown. For smaller i0 the switching time is larger, since
’0 � arcsin�i0� depends on i0. On the other hand, the bias
current i0 must not be too large, since it will lead, in
absence of driving, to the reduction of the mean lifetime
of superconductive state (4), i.e., to the increase of storage
errors. Therefore, there must be an optimal value of bias
current i0, giving minimal switching time and acceptably
small storage errors. Following [5], storage errors are
acceptably small up to i0 � 0:99 for � � 0:001. In the
inset of Fig. 3 the MSTas a function of driving frequency
is presented for the following parameters: i0 � 0:5, A �
1, � � 0:02; 0:05; 0:5. We observe the phenomenon of
resonant activation: MST has a minimum as a function
of driving frequency. The approximation (9) does not
describe the resonant activation effect at high frequen-
cies, but it works rather well below 0:1!c, which is
enough for practical applications. It is interesting to see
that near the minimum the MST has a very weak depen-
dence on the noise intensity; i.e., in this range of the signal
frequency the noise is effectively suppressed. We observe
also the NES phenomenon. There is a frequency range,
around 0:2–0:4!c for i0 � 0:5 and around 0:3–0:5!c for
i0 � 0:8, where the switching time increases with an
increase of noise intensity. The NES effect increases for
smaller i0 because the potential barrier disappears for a
short time interval within the driving period [12] and the
potential is more flat, so noise has more chances to prevent
FIG. 3. The MST versus frequency for f�t� � A sin�!t� (com-
puter simulations) for i � 1:5. Long-dashed line, � � 0:02;
short-dashed line, � � 0:05; solid line, � � 0:5; from top
to bottom, i0 � 0:5 and A � 1, i0 � 0:8 and A � 0:7.
Inset: simulations versus theoretical results obtained from
Eq. (9) for i0 � 0:5, A � 1, and � � 0:02 (diamonds), � �
0:05 (circles), � � 0:5 (crosses).
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FIG. 4. The SD versus frequency for f�t� � A sin�!t� and
� � 0:02. Computer simulations: dash-dotted line, i0 � 0:3,
A � 1:2; short-dashed line, i0 � 0:5, A � 1; long-dashed line,
i0 � 0:8, A � 0:7. The MST is given by crosses for comparison
(i0 � 0:8, A � 0:7). Formula (8), solid line; formula (9), dia-
monds.
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the phase to move down and delay switching process. It is
clear that this effect may be avoided, if the operating
frequency does not exceed 0:2!c. Besides, the SD also
increases above 0:2!c (Fig. 4).

The plots of SD versus driving frequency for � � 0:02,
i � 1:5, and different values of i0 � 0:3; 0:5; 0:8 are
shown in Fig. 4. The approximation (9) is not as good
for SD as it is for MST, even if the qualitative behavior of
SD is recovered. We see that the minimum of ��!�, for
� � 0:02, is located near the corresponding minimum of
��!� (Fig. 3). For the SD the optimal frequency range
where the noise-induced error will be minimal is from 0.1
to 0.3 for the considered range of parameters. It is inter-
esting to see that, near the minimum, the SD for sinusoi-
dal driving actually coincides with SD for dichotomous
driving (8). This means that, even in the case of smooth
driving, the limiting value of SD may nearly be reached,
but the RSFQ circuit must be properly optimized.

Finally, we note that the close location of minima of
MST and its SD means that the optimization of RSFQ
circuit for fast operation will simultaneously lead to the
minimization of timing errors in the circuit, which is the
main result of this Letter.

In the present Letter, we reported an analytical and
numerical analysis of influence of fluctuations and peri-
odic driving on temporal characteristics of the JJ. For the
case of dichotomous driving the analytical expression of
standard deviation of switching time works in a practi-
cally interesting frequency range and for arbitrary noise
intensity. For the case of sinusoidal driving the resonant
activation effect has been observed in the considered
system: mean switching time has a minimum as a func-
tion of driving frequency. Near this minimum the stan-
dard deviation of switching time takes also a minimum
value. The RA phenomenon was observed very recently in
the underdamped JJ [13]. Our theoretical investigation
177001-4
could motivate experimental work in overdamped JJs as
well. Utilization of this effect in fact allows one to sup-
press time jitter in practical RSFQ devices and, therefore,
allows one to significantly increase working frequencies
of RSFQ circuits. Our study is not only important to
understand the physics of fluctuations in a JJ to improve
the performance of complex digital systems, but also in
nonequilibrium statistical mechanics of dissipative sys-
tems, where noise assisted switching between metastable
states takes place [9–13] and in neural networks.
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