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Brownian Motion of Microscopic Solids under the Action of Fluctuating Electromagnetic Fields
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The Brownian motion of a microscopic solid under the action of fluctuating electromagnetic fields
was detected using atomic-force microscopy. The distance dependence of the noise spectrum of free
cantilever oscillations, of the resonance frequency, and of the damping coefficient were investigated
under ultrahigh vacuum conditions. An analytic expression for the damping coefficient of a metallic
tip–sample system was obtained on the basis of fluctuating electrodynamics. Our calculation is in good
agreement with experimental data.
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The Brownian motion of small particles in liquids was
discovered by Robert Brown in 1827 as a direct manifesta-
tion of molecular chaos. The phenomenon was explained
by Einstein and by Smoluchowski [1,2] in terms of random
fluctuations of a particle coordinate under the action of sto-
chastic impacts of molecules or inhomogeneities in liquids
or gases. For an elementary charge a relevant solution of
the problem of Brownian motion of an electron under the
influence of thermal fluctuating fields taking into account
a radiative reaction force may be found in textbooks (see,
for instance, Ref. [3]). Experimentally and theoretically,
scattering of electrons by thermal electromagnetic fields
near a solid surface was investigated in Ref. [4]. Up to
this day, the problem of stochastic motion of charged or
neutral small bodies under the action of random forces of
any nature is an interesting topic in science, in particular,
in nanophysics.

The development of scanning probe microscopies in-
duced many successful applications of local probe meth-
ods in various fields of science and technology. As an
example, the highly sensitive atomic force microscopy
(AFM) was used in Ref. [5] to study the tip-sample in-
teractions by means of noise spectra analysis of stochastic
cantilever motion.

Here we present the first results of the investigation
of a freely vibrating motion of an AFM cantilever near
a clean solid surface under ultrahigh vacuum conditions.
Variations of the resonance frequency and the damping
coefficient, as a function of the distance between a tip and
sample surface, were detected. It will be shown that the
experimental results may be explained using the concept
of Brownian motion of a microparticle under the action
of thermal fluctuating electromagnetic fields generated by
the sample being investigated. For a metal-metal system
an analytical formula for the damping coefficient was
obtained which is in good agreement with experimental
results.

A general theory of equilibrium thermal fluctuations of
an electromagnetic field was published by Rytov [6] and
further developed in Refs. [3,7]. A fluctuating electro-
magnetic field is induced by random charges and currents
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which result from quantum or thermal fluctuations. This
field is present inside any absorbing matter and also out-
side of it, as progressive waves radiated by a body and as
nonradiating states exponentially decaying with the dis-
tance from a body, the latter representing quasistation-
ary or evanescent fields. An interesting extension of the
theory was provided by Carmanati and Greffet [8].

The results of Rytov’s theory are valid for any ra-
tio of the wavelength of an electromagnetic field l and
the characteristic spatial scale d of a system. This the-
ory contains Planck’s law as an asymptotic case for
l ø d. In accordance with Planck’s law, the spectral
density of energy of the radiative part of a thermal elec-
tromagnetic field is given by u0w � v2Q�v, T ��p2c3,
with Q�v, T � � �h̄v�2� coth�h̄v�2kBT�, where kB is the
Boltzmann constant, T is the absolute temperature, and c
is the speed of light in vacuum. The energy distribution of
the spectrum of blackbody radiation is independent of the
properties of the material emitting this radiation. How-
ever, in close proximity to the sample surface or in small
volumes, when l # d, the spectral composition of the
thermal fluctuating fields is changing significantly. For
example, in Refs. [3,6,7] it was shown that, at the distance
d from the boundary of a half-space filled with a material
with a dielectric constant e�v� � e0�v� 1 ıe00�v�, the
spectral energy density of an electromagnetic field gen-
erated by such a sample for kd � 2pd�l ø 1 is pro-
portional to �kd�23. As in the low-frequency limit for
dielectrics e0�v� � e

0
0; e00�v� � e

00
0 v, where e

0
0 and e

00
0

are real numbers, we have

uw �
e
00
0 kBT

d3�1 1 e
0
0�2

. (1)

The asymptotic result (1) is valid only for poor con-
ductors where jej $ 1. In analogy, from the results
of Refs. [3,6,7] it is possible to find the low-frequency
limit for good conductors, where je�v�j ¿ 1 and e�v� �
ı�4ps�v�, with s the conductivity of the material. For
the same case kd ø 1, we have

uw �
ckBT

d4
p

sv3
. (2)
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In this formula, v is restricted at the low values, because
for good metals the thickness of a skin layer d �
c�

p
2psv ø min�d, R, h�, where R, h are the radius

of curvature and the thickness of a sample. From (1)
and (2) it follows that the quasistationary (evanescent)
part of the thermal field contains information about the
electrodynamical properties of materials, in contrast to
the case of the radiational part of the thermal field.
These formulas testify that the spectral density energy of
thermal fields is shifted to the low-frequency part of the
spectrum and sharply increases with decreasing distance
from the sample surface. In the high-frequency limit
for any material the spectral density of energy decays
exponentially with the frequency.

The Brownian motion can only be detected for very
small particles, since for massive bodies the random force
action of molecules will be averaged out. Therefore, we
tried to register the Brownian motion of a microscopic
solid (for example, a micrometer-sized probe of an atomic-
force microscope located at a distance d from a sample
surface). This seems appropriate since, as indicated by
(1) and (2), the energy of a thermal fluctuating electro-
magnetic field increases near a solid surface, especially at
the low-frequency part of spectrum, including the typical
range of mechanical frequencies of AFM cantilevers, i.e.,
103 105 s21.

Our calculations aim to estimate the damping coeffi-
cient of a system consisting of two metallic solids sepa-
rated by a vacuum gap. Let us consider our system as a
discrete dissipative system. The fluctuations of the verti-
cal coordinate of a cantilever are described by the function
z�t�. These fluctuations are induced by external stochastic
forces f�t�. The relevant part of the tip that is involved
in van der Waals (vdW) interactions originates from an
apex volume approximately determined by the tip radius,
p � 1025 cm. As the wavelength of an electromagnetic
fluctuating excitation is much larger than the radius of the
tip, we will use a simple oscillator model of the system as
described by the Langevin equation,

meff
d2z
dt2 1 g

dz
dt

1 meffv
2
0z � f�t� , (3)

where meff is the effective mass of an oscillator, g is the
friction parameter, and v0 is the eigenfrequency of the
system. The Fourier transform z�v� is connected with
the Fourier transform of a random force f�v� by the well-
known expression z�v� � a�v�f�v�, where a�v� is the
susceptibility of the system. The power density spectra
	jz�v�j2
 and 	jf�v�j2
 of the stochastic processes z�t�
and f�t� are expressed via the susceptibility of the system
in accordance with the fluctuation dissipation theorem
(FDT) [9].

From (3) and FDT, it is easy to find the expressions for
the susceptibility

a�v� �
meff�v2

0 2 v2� 1 ıgv

m2
eff�v2

0 2 v2�2 1 g2v2
. (4)
Thus an analytical expression for the shape of the reso-
nance peak in frequency space [power density spectrum
(PDS)] can be given,

	jz�v�j2
 �
kBTg

p�m2
eff�v2

0 2 v2�2 1 g2v2�
. (5)

Then, from (3), (4), and FDT we have a general formula
for the friction coefficient

g � �kBT�21
Z `

0
	f�t�f�0�
 dt . (6)

In our experiments a commercial UHV AFM (Omicron)
operated at room temperature was used. All presented
data were obtained at a background pressure of less than
5 3 10210 mbar. The cantilever was a standard 320-mm-
long SiN contact triangular-shaped cantilever (Park Sci-
entific Instruments) with a spring constant of k � 0.01 6

0.005 N�m. An Au(111) crystal was used as a sample,
sputtered and tempered two days before the measurement.
The AFM tip was sputtered and coated with at least 10 nm
of Al to avoid residual charges. A schematic diagram of
the experiment is shown in Fig. 1. The cantilever near the
surface is driven by intrinsic thermal, quantum stochas-
tic, and electromagnetic forces. After detection the signal
is transformed in real time to its power density spectrum
via fast Fourier transform using a commercial spectrum
analyzer (LeCroy 334A, 500 MHz). A single measure-
ment consists of a series of spectra obtained at different
distances from the surface. The resonance peaks at dif-
ferent distances from the sample surface are presented in
Fig. 2. These peaks are described by Lorentzian curves.
The x2 fits on the data were done to extract all parame-
ters available from the resonance peaks (5). The ampli-
tude A � kBTg�pm2

eff, the damping coefficient g�meff,
and the resonance frequency f0 � v0�2p show a signifi-
cant distance dependence. In Fig. 3 the dependence of the

FIG. 1. Sketch of the experimental setup. The signal propor-
tional to z�t� is detected via a 4-quadrant detector and trans-
formed into its PDS via FFT in real time.
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FIG. 2. Typical noise spectra at different distances from the
surface. The resonance frequency distance dependence and the
broadening of the resonance peak can be seen. The sharp
peaks correspond to electronic noise. The distances given in
the figure correspond to the snap-on point as a reference point.
z2�v� is given in the spectrum analyzer’s intrinsic logarithmic
scale for the PDS.

damping coefficient on the distance d is shown. These
data were well reproduced in several measurements.

In order to evaluate the influence of surface residual
potentials, force-voltage measurements were done at dif-
ferent distances from the surface to find the force-voltage
minimum. The voltage which corresponds to the mini-
mum of these curves and which compensates all residual
potentials is equal to 260 6 50 mV.

Any distance-dependent measurements were done from
approximately 100 nm to the point of the jump in the
cantilever to the surface (“snap-on” point). The snap-
on point is determined by calculating the effective spring
constant and f0 under the assumption of a simple 1�d
dependence of the interaction energy (see Ref. [10]).

FIG. 3. Damping coefficient g�meff vs distance to the snap-
on point. The three closest points to the snap on are not
included in the fitting of the functional dependence of g�meff,
but they are shown in the plot. Any measurements of distance
have an error of up to 25% of the absolute value. The distance
dependence is corrected for cantilever deflection.
2404
Thus, the experimental f0 versus distance curve can be
fitted according to this expression with the snap-on point
as a fitting parameter. Clearly, the harmonic oscillator
model breaks down for distances very close to the snap-
on point. In this case, the shape of the resonance peak is
no longer Lorentzian.

We obtain an explicit form of the friction parameter
for the case of a vibrating metal tip over the planar metal
half-space under the action of an external force using an
expression for the temporal variation of a total energy in
the system given by

dE
dt

� f�t�y 2 2F , (7)

where y is the velocity of the tip and F � gy2�2 is the
dissipative function. Both the tip and the planar sample
are assumed as electrically neutral but they may interact
via vdW forces.

The thermal fluctuating electromagnetic fields of the
half-space induce random charges and currents into the
apex of the tip moved close to the sample surface. As
a consequence, inside the neutral system the statistical
average value, for example, the charge density 	r��r, t�
,
is identically equal to zero, but the instantaneous value
r��r , t� and the mean square value 	jr��r , t�j2
 is finite.

At first we consider the forced harmonic movement
of a particle over the sample with the velocity y�t� �
Re�y�V� exp�ıVt��, where V is the frequency of the
cantilever near the surface sample. Because of this
movement, the additional instantaneous current j��r , t� �
r��r , t�y�t� will appear in our system. This will induce
the image current j��r, t� � r̃��r , t�y�t� inside the metal
sample, where r̃��r, t� � 2r��r , t�. The Joule dissipation
of the current j̃��r, t� determines the losses in our system.
This situation is similar to that of a free charge moving
in an electrostatic field between the electrodes of a plane
capacitor. If the material of the electrodes is not a perfect
metal, the induced image current in the electrodes leads to
the Joule dissipation of energy, and the movement of the
charge is not conservative.

We identify the Joule losses QJ of the image current
j̃��r , t� inside the metal half-space with the losses in the
system of a vibrating cantilever near the sample with
QJ � 	2F
. By definition we have

QJ �
Z

V

ø
j̃2��r , t�

ss

¿
dV , (8)

where ss is the conductivity of the sample. The integra-
tion is done over the volume of the induced image current.
Using Fourier transforms, it can be shown that j̃��r , v� �
y�V� � r̃�v 1 V� 1 r̃�v 2 V���2 � r̃�v�y�V�, if
v ¿ V for typical frequencies of cantilever vibra-
tions of atomic-force microscopies. The approximation
j̃��r , v� � r̃�v�y�V� implies a separation of cantilever
vibrations and electromagnetic excitations in the system
and allows us to obtain the necessary form of losses in an
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easy way. Then, taking into account the expansion over
the positive frequencies only, we have

QJ � 2y2�V� Re
Z `

0

Z
V

	j r̃2��r , v�j2

ss

dv dV . (9)

A comparison with the equality QJ � 2F � 	gy2

results in the expression for the friction parameter

g � 2 Re
Z `

0

Z
V

	jr̃2��r , v�j2

ss

dv dV , (10)

Now, the problem is to find the mean square values of the
induced image charges 	jr̃2��r , v�j2
.

To do this, we use the solution from Ref. [3], of
the problem of current induction inside a thin metallic
rod by thermally fluctuating electromagnetic fields of
surrounding solids. In the case where the radius of the
cylindrical rod p (this is the radius of curvature of the
moving probe) is much smaller than the wavelength of
the thermal fields, it is possible to extract the mean square
value of the induced current I�v� for the case kd ø 1,

	jI�v�j2
 �
3p2c3stQ�v, T �
4v5�2d4

p
8pss

, (11)

where we used a formula for the specific impedance of a
cylindrical rod of radius p in considering the normal skin-
effect; st is the conductivity of the rod (tip).

To obtain the value 	jr��r, v�j2
 for (10) we use
the continuity equation diyj��r , v� � ıvr��r, v�. An
integration over the tip apex and the multiplication to
the complex conjugated value followed by statistical
averaging yield

	jI�v�j2
 � v2
Z Z

	jr��r , v�j2
 dV dV 0. (12)

After substitution of (11) and (12) into (10) we have

g �
3c3st

2pd4
p

8ps3
s

Z v1

v2

Q�v, T �v29�2 dv , (13)

where we assumed V � p3. The integration in (13) is
restricted over the frequencies from v2 �v ¿ V� up
to v1 because v ø s in the model for the dielectric
constant for good metals, jej ¿ 1. Finally, up to a
constant, which is taking into account the real geometry
of a probing tip, and in the case h̄v # kBT , we have

g �
stc3kBTt7�2

pd4
p

8ps3
s

, (14)

where t � v
21
2 is the free parameter of the problem. It

is evident that in our consideration we are neglecting the
thermal fields of the tip itself compared to fields of a half-
space. From (13) it is easy to obtain a related formula in
the case T � 0.
The damping coefficient g�meff from (14) is fitted to
our experimental results using

g

meff
�

K
�x 1 so�4 1 g0 , (15)

where K includes all factors from (14), x 1 so � d in
nm, so is the snap-on point, and g0 corresponds to the in-
trinsic damping of the cantilever, when d ! `. The snap
on is not a real fitting parameter, because it is determined
as described above and not changed for a given experi-
ment. The result of the fitting procedure is shown in
Fig. 3 by a solid curve. This fit was done for our experi-
mental parameters T � 300 K, kBT � 4, 1 3 10214 erg,
c � 3 3 1010 cm�s, p � 1025 cm, ss � 3 3 1017 s21,
st � 1016 s21, and meff � 1028 10210 g. For these
values of meff we have t � 10212 10213 s, close to the
relaxation time of electrons in metals. Taking into ac-
count that (14) is valid up to a constant, it should be re-
garded as a good coincidence.

In conclusion, we discussed the Brownian motion
of a microscopic solid under the action of fluctuating
electromagnetic fields under ultrahigh vacuum conditions
using atomic-force techniques. From an analysis of the
noise spectrum of cantilever vibrations, the functional
dependencies of resonance frequency and the damping
coefficient on the size of the vacuum gap were obtained.
The expression for the damping coefficient of a tip-sample
system for metals was obtained on the basis of fluctuating
electrodynamics, in good agreement with the experimen-
tal data.
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