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Vortex states and magnetization curve of square mesoscopic superconductors
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The structure of the vortex states in a square mesoscopic superconductor is analyzed in detail using the
numerical simulation within the time-dependent Ginzburg-Lan@d@GL) theory. Various vortex stategsor-
tices, vortex molecules, multiquanta vorticese observed and the magnetization curve is obtained. Different
changes in vortex structures are identified with the peculiarities on the magnetization curve. Stability of a state
consisting of vortices and antivortices is discussed.
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There has been an exciting developméntthe study of The model.We investigate the structure of the vortex
magnetic properties of mesoscopic superconductors initiatestatesuch as separated vortices, vortex molecules and mul-
in pioneering work$:> Small few fluxoid superconductors  tiquanta vorticesin a mesoscopic square superconductor, us-
(FFS reveal the exotic vortex formations—multiquanta vor-ing the free energy functional for the order paramé@p):
tices and vortex molecules—that can transform one into an-
other via first or second order phase transitions. These exotic b
states appearing in small coherence length-size safiples F=f a(T)|¥|2+ §|\If|4
are due to screening currents pushing vortices to the center of S
the sample. Thus one should expect the resulting vortex con- 5
figurations to be very sensitive to the geometry of the n h
sample. Indeed, Chibotaret al! showed that the conflict Am*
between, for example, the fourfold symmetry of the square
sample and the three-quanta vortex configuration may resuttherea(T) = a(T—T.), T is the critical temperaturen* is
in the appearance of complex vortex-antivortex configurathe effective mass of electro®,= w7 c/e is the flux quan-
tions (four vortices+ one centered antivortgin the vicinity ~ tum. Hereafter we use the following dimensionless units:
of upper critical magnetic field. |Wo|=v|al|/b for the order parametédi.e.,|¥|=1 in a bulk

While numerical studies of the vortex states in mesossuperconductor withH=0), é= % /(4m*[a[) for the
copic superconductors explained fairly well many of the ob-jength, 4ea?¢/(#:b) for the current densityi.e., the dimen-
Zervedtf?atures tc_)f FFS_of dlffet'renlt geotrrr:etnes, ievgral funsionless d(a_pairing current d_enSiTcV: 2/(3\./5)]_, Dy /(27¢)

amental queslions, In particuiar, the mechaniSm Oty the A field [i.e., the unit of magnetic field and local

multiquanta vortex dissociation and the role of Symmetrymagnetization isH.,=®,/(27¢%)]. The dimensionless
effects in formation of particular vortex configurations re-¢,.m for the supercéﬁnduc('ging current density is

main open. In our work we develop a regular numerical de-

scription of the vortex state of FFS, based on the time- j=Im[¥*(V-iA)¥].

dependent Ginzburg-LanddWiDGL) theory and outline the

symmetry approach to analytical studies of vortex molecules The magnetic field is perpendicular to the sample. We
and complexes. Our simulations provide a possibility for de-consider the sample of the size<\ ¢t (et IS the effective
tailed investigation of the nonlinear regime at low fielfer  penetration depth of magnetic fi¢ldThis allows to neglect
below the upper critical field A large number of possible the contributions to the magnetic field from supercurrents
metastable states in the system is known to result in a stronand thus to exclude Maxwell equations.

dependence of vortex configurations on the initial conditions. Calculations.We calculate the OP distribution from the
In this case the evolution of the system with a change inTDGL equations sequentially for different values of the mag-
magnetic field can be extremely sensitive to the details of thaetic field starting withH=0 with a stepAH=0.01.

dynamic model. The use of the gauge-invariant time- The dimensionless TDGL equations read

dependent approach allows us to control the dynamics of
phase transitions between the vortex states, which is impor-
tant for the analysis of the magnetization curve in realistic
experimental conditions. In particular, our TDGL simulations
allowed us to visualize the changes in the vortex arrange- i
ment and obtain different stationary vortex states in a square Vi =— Phe
superconductor, and enables us to identify modifications in

vortex arrangement with the peculiarities on the magnetizaHereafter we use the units®c,b/(8e%a¢?) for time and
tion curve and its derivatives. Finally, we discuss a possibil4ea®&?/(f.a,b) for electric potential. Herer, is the normal

ity of coexistence of vortices and antivortices in mesoscopiconductivity,u is the dimensionless characteristic time scale
superconductors. of the TDGL theory. The Laplace equation for electric po-
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tential ® results from the continuity equation that has the ' ' 0.015,
following dimensionless formdiv (js— V®)=0. 0.06- :

We approximated Eq(2) on a rectangular grid on the
(x,y) plane. The axes are chosen to be parallel to the sampl
edges. In order to save the gauge invariance of the differenc 0.04}
equations the space differential operat®—(iA) was ap- Y
proximated in the same way as in Ref. 6. The evolution <
equations(2) are solved by the explicit Euler method using Y 0.02k
Fourier approachallowing for a fast solution of the Neu- l§= '
mann problem. Note that the difference equations yield a =
zero electrical potential in a stationary state. This allows us
to determine the precise moment when the stationary state i
reached.

To detect the vortex on the grid cell corresponding to the . . ‘
certain grid nodeX;,y;), we use the following criterion: 0. 0 05 H/H 1 15 2

c2

* *
arg Wi Vi) Harg Wi, Wivajaa) FIG. 1. The magnetization curvd (H) for L=8¢. The num-
+arqW*. .. WY +arg P . W )=27N. bers near the branches are guides for the eye and denote the total
I ajeaWiva)) T WE Wi ) vorticity A/ in the sample.

()
. . . , 1 [rXxj]
HereW; ;=W(x;,y;) is the complex grid function, arg() is M= — —de dy,
the argument of the complex number ;, belonging to the Sls 87k

interval (—r,7r]. If integerN=*1, there is a vortex with where k=\/¢ is the Ginzburg-Landau parameter, a8ds
the winding numbeN. If integerN=0, there are no vortices sample area.

in the cell. It should be noteq that the_re are no multiquanta  The total vorticity is defined as
vortices for the rectangulagrid approximation of Eq(2),

i.e., maxN|=1 for each grid cell. Nevertheless, the multi-

guantum vortex appears in the grid model as an ensemble of N= fﬁFV(arg\If)dF/(ZTr),
singly-quantized vortices in the neighboring cells.

Most calculations were performed on the grid witlx ~ wherel’ is the perimeter of sample, aMj( is the argument
=Ay=¢/16 for L=8¢ and withAx=Ay=¢/64 for L=4¢. of the complex functionV (i.e., the order parameter phase
The numerical factou is determined by the pair-breaking In the absence of either multiquanta vortices or antivortices,
mechanism. If the lack of the energy gap is connected wittthe A/ simply represents the number of vortigsmgularities
strong electron-phonon relaxation, then 5.79(Ref. 8. For  of W) in a superconductor. The change in the total vorticity
superconductors with a high concentration of magnetic imupon varying the magnetic field describes the entraioce
purities u=12 (Ref. 9. The time step was in the range exit) of vortices.

0.005-0.01 of dimensionless units. The introduction of a small, 0.@% 0.01¢, defect(a piece
For all values of magnetic field the average magnetizatiorof a normal metal leaves the OP and the current distribu-
was calculated as tions almost undisturbed. Yet such a defect slightly disturbs
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FIG. 2. (Color) Vortex rearrangement scenario faf=2. Contour plots of théW¥| for H=0.34(a) andH=0.33(b).
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FIG. 3. Dependencd®M/dH? on H for L=8¢. The numbers
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the fourfold symmetry of thescheme of numerical simula-
tion, which allows us to obtain the branches on the magne-
tization curve with an odd total vorticity, whereas a perfect
fourfold symmetric sample provides only evAhbranches
(vortices entered into the sample simultaneously from the

two opposite edges

We observe the Meissner state when the total vorticity
N=0, and sequential entries of vortices, which produces dif-
ferent branches with different total vorticities on the magne-
tization curve(Fig. 1). We have obtained different vortex
states and studied their behavior under a changing magnetic
field. One interesting result was observed.f6r 2. We have
observed that the cusp on the 2-vortex branch is caused by
rearrangement of two vortices. At a higher magnetic field
vortices are arranged along the sample diagphRi). 2(a)],
at lower field the vortices get rearranged along the sample

edge[Fig. 2(b)].

near the branches are guides for the eye and denote the total vor- Also we have observed peaks on some branches on the
dependencd®M/dH? (see Fig. 3. Such peaks are caused by

ticity A in the sample.
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FIG. 4. (Color) Contour plots of thd¥| for (a) double-quantized vortexH=0.65) and(b) 3®,-molecule situated in the centeH (
=1.26, N=7). The white circles denote singly-quantized vortices, the white square denotes the double-quantized vortex.

2

FIG. 5. (Color) The contour plot of th¢W| for H=2.18H,, L=4¢ in an ideal squaréa) and in a square with a small defeb) of the
size 0.1 0.08 shown by the blue rectangle on the upper edge. The white circles denote the vortices, the green triangle denotes the

antivortex.
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dissociation of three-vortex molecutior A’'=7), and by de- 5(b)]. Note that all through the above calculations the space
cay of the double-quantized vorticé®r V=2 andN=6)  resolution was quite highAx=Ay= ¢/64. Thus we come to
which are situated in the center of specinieae Fig. 4. a conclusion that this vortex configuration with one antivor-

In a recent work Chibotaruet al. report obtaining a vor- tex and four vortices is very sensitive to distortions of the
tex arrangement with an antivortex fa¥=3 at the upper symmetry, which may be caused by defects or fluctuations.
critical field H.3 in a square mesoscopic superconductor. At We would like to point out that similarly to the nontrivial
the certain values of the sample size (318£<4.5) they  structure of a triple-quantized vortex in a square, a double-
have found a vortex state with four vortices on the diagonalgjuantized vortex in a triangle also consists of an antivortex
and one antivortex in the center of the square. We obtainegind three vortice¥® This vortex arrangement can be de-
such a vortex statpFig. 5 (a)] for the sample withL =4¢  scribed in the vicinity of the core as follows = a,r?e??
near the upper critical fieldH=2.1Hc,, He3=2.18Hc5).  +4_re '? since according to the boundary conditions the
HereH,; is the upper crm_cal field in a b_ulk su_perconductor. dominant term R,(r)e?? generates additional terms

We conjecture that this vortex configuration of a Sma||R2+3m(r)e(2+3m)i0 (M=0,+1%+2,...)
size 0.1%X0.1% is realization of a triple-quantized vortex
in a square superconductor. Let us consider a triple-quantiz
vortex within the expansion in series of harmonids
=3Ry(r)e""". As emphaS|z.ed in Ref. 1, the fourfold sym- ions and calculated the corresponding magnetization curves.
metry of a sample strongly influence the vortex arrangemen{N

therefore, the dominant term for the triple-quantized vortex e have 'def“'f'e" d|ffe_r<'ant mod|f|cat|ons .Of t_he vortex ar-
Rs(r)e¥? generates additional termBg, 4 (r)e®*4mio rangement with peculiarities in the magnetization curves and

(M=0,:1,+2 ). Since at small distance’ ot the their derivatives. In particular, we identified the cusps on the
TR i n ’ second derivative of the magnetization curve with the vortex
OPW=a(r/Ly)e "+ (r/Ly)%e*? (whereL,= VAc/(eH)

= £is the maanetic lenath in the vicinity of the upper critical molecule dissociation and the decay of a double-quantized
f‘g magr 9 . 1y PP vortex. We have found that a rearrangement of two vortices
field), which yields one antivortex in the center and four

vortices around the antivortex in the vertices of a square. Thleads to a kink on the 2-vortex branch of the magnetization

: L X Eurve.
generation of t.h.eR‘l harmonic is necessary o satisty .the We have also found that a triple-quantized vortex can be
boundary cond.|t.|on atthe sample gdgt_a and can be. COns'der‘ra'galized in a square mesoscopic superconductor near the up-
as a superposition of four Gaussian-like nuclei with center%

near the square boundary and characterized by four differe 6er critical fieldH .5 as a vortex state with one antivortex and
ti just le- ti tex i tri I
phasesp. = —37n/2 (n=0,1,2,3). Close to the square cen- ur vortices just as a double-quantized vortex in a triangle

S : L superconductor is realized as one antivortex and three vorti-
ter such a superposguon gives us Re, harmonic witha . ces. Such vortex states are very sensitive to any distortion of
~L/Ly exp(—(L/Ly) ./4)' So we can cpncllude that the size the symmetry, like defects or fluctuations. We have presented
ro of such vortex-antivortex configuration is naturally deter- symmetry approach that enabled us to evaluate analytically
mined by the facto&/L and appears to be much smaller than

the conditions for the existence of the complex vortex-
the coherence length even fdr=4¢: rqo/Ly~+L/Ly antivortex configurations.
X exp(— (L/Ly)?/8).

In order to examine a stability of such a vortex state to

fourfold symmetry distortions we set a small rectangular de- We thank V. Moshchalkov for useful discussions. This
fect of a normal metal asymmetrically on one edge of awork was supported by the U.S. DOE, Office of Science
sample. Starting with the size 0£%0.02¢ we have in- under Contract No. W-31-109-ENG-38, NATO Collaborative
creased the square of defect and observed distortion of tHankage Grant No. PST.CLG.978122, Russian Foundation
vortex state mentioned above: the antivortex came close tfor Fundamental Research, Grant Nos. 99-02-16188, 00-02-
one of the vortices and when the size of defect becamé&6158, 01-02-06494, and by Russian Academy of Sciences
0.16£x0.0& this vortex-antivortex pair annihilatefFig.  under the Program “Quantum Macrophysics.”

In conclusion, we have derived different vortex states in a
esgquare mesoscopic superconductor using numerical simula-
tions of the time-dependent Ginzburg-LanddiDGL) equa-
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