
RAPID COMMUNICATIONS

PHYSICAL REVIEW B, VOLUME 65, 140503~R!
Vortex states and magnetization curve of square mesoscopic superconductors
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The structure of the vortex states in a square mesoscopic superconductor is analyzed in detail using the
numerical simulation within the time-dependent Ginzburg-Landau~TDGL! theory. Various vortex states~vor-
tices, vortex molecules, multiquanta vortices! are observed and the magnetization curve is obtained. Different
changes in vortex structures are identified with the peculiarities on the magnetization curve. Stability of a state
consisting of vortices and antivortices is discussed.
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There has been an exciting development1 in the study of
magnetic properties of mesoscopic superconductors initi
in pioneering works.2–5 Small few fluxoid superconductor
~FFS! reveal the exotic vortex formations–multiquanta vo
tices and vortex molecules–that can transform one into
other via first or second order phase transitions. These ex
states appearing in small coherence length-size sample2–5

are due to screening currents pushing vortices to the cent
the sample. Thus one should expect the resulting vortex c
figurations to be very sensitive to the geometry of t
sample. Indeed, Chibotaruet al.1 showed that the conflic
between, for example, the fourfold symmetry of the squ
sample and the three-quanta vortex configuration may re
in the appearance of complex vortex-antivortex configu
tions~four vortices1 one centered antivortex! in the vicinity
of upper critical magnetic field.

While numerical studies of the vortex states in mes
copic superconductors explained fairly well many of the o
served features of FFS of different geometries, several
damental questions, in particular, the mechanism
multiquanta vortex dissociation and the role of symme
effects in formation of particular vortex configurations r
main open. In our work we develop a regular numerical
scription of the vortex state of FFS, based on the tim
dependent Ginzburg-Landau~TDGL! theory and outline the
symmetry approach to analytical studies of vortex molecu
and complexes. Our simulations provide a possibility for d
tailed investigation of the nonlinear regime at low fields~far
below the upper critical field!. A large number of possible
metastable states in the system is known to result in a st
dependence of vortex configurations on the initial conditio
In this case the evolution of the system with a change
magnetic field can be extremely sensitive to the details of
dynamic model. The use of the gauge-invariant tim
dependent approach allows us to control the dynamics
phase transitions between the vortex states, which is im
tant for the analysis of the magnetization curve in realis
experimental conditions. In particular, our TDGL simulatio
allowed us to visualize the changes in the vortex arran
ment and obtain different stationary vortex states in a squ
superconductor, and enables us to identify modifications
vortex arrangement with the peculiarities on the magnet
tion curve and its derivatives. Finally, we discuss a possi
ity of coexistence of vortices and antivortices in mesosco
superconductors.
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The model.We investigate the structure of the vorte
states~such as separated vortices, vortex molecules and m
tiquanta vortices! in a mesoscopic square superconductor,
ing the free energy functional for the order parameter~OP!:

F5E
S
Fa~T!uCu21

b

2
uCu4

1
\2

4m*
US ¹2

2p i

F0
ADCU2Gdx dy, ~1!

wherea(T)5a(T2Tc), Tc is the critical temperature,m* is
the effective mass of electron,F05p\c/e is the flux quan-
tum. Hereafter we use the following dimensionless un
uC0u5Auau/b for the order parameter~i.e., uCu51 in a bulk
superconductor withH50), j5A\2/(4m* uau) for the
length, 4ea2j/(\b) for the current density@i.e., the dimen-
sionless depairing current densityj c52/(3A3)#, F0 /(2pj)
for the A field @i.e., the unit of magnetic field and loca
magnetization is Hc25F0 /(2pj2)#. The dimensionless
form for the superconducting current density is

j5Im@C* ~¹2 iA!C#.

The magnetic field is perpendicular to the sample.
consider the sample of the sizeL!le f f (le f f is the effective
penetration depth of magnetic field!. This allows to neglect
the contributions to the magnetic field from supercurre
and thus to exclude Maxwell equations.

Calculations.We calculate the OP distribution from th
TDGL equations sequentially for different values of the ma
netic field starting withH50 with a stepDH50.01.

The dimensionless TDGL equations read

uS ]

]t
1 iF DC5C2uCu2C1~¹2 iA!2C,

¹2F52
i

2
uFC* S ]

]t
1 iF DC2c.c.G . ~2!

Hereafter we use the units\2snb/(8e2a2j2) for time and
4ea2j2/(\snb) for electric potential. Heresn is the normal
conductivity,u is the dimensionless characteristic time sc
of the TDGL theory. The Laplace equation for electric p
©2002 The American Physical Society03-1
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tential F results from the continuity equation that has t
following dimensionless form:div( j s2¹F)50.

We approximated Eq.~2! on a rectangular grid on th
(x,y) plane. The axes are chosen to be parallel to the sam
edges. In order to save the gauge invariance of the differe
equations the space differential operator (¹2 iA) was ap-
proximated in the same way as in Ref. 6. The evolut
equations~2! are solved by the explicit Euler method usin
Fourier approach7 allowing for a fast solution of the Neu
mann problem. Note that the difference equations yiel
zero electrical potential in a stationary state. This allows
to determine the precise moment when the stationary sta
reached.

To detect the vortex on the grid cell corresponding to
certain grid node (xi ,yj ), we use the following criterion:

arg~C i , j* C i , j 11!1arg~C i , j 11* C i 11,j 11!

1arg~C i 11,j 11* C i 11,j !1arg~C i 11,j* C i , j !52pN.

~3!

HereC i , j5C(xi ,yj ) is the complex grid function, arg(C) is
the argument of the complex numberC i , j , belonging to the
interval (2p,p#. If integer N561, there is a vortex with
the winding numberN. If integerN50, there are no vortices
in the cell. It should be noted that there are no multiqua
vortices for the rectangulargrid approximation of Eq.~2!,
i.e., maxuNu51 for each grid cell. Nevertheless, the mul
quantum vortex appears in the grid model as an ensemb
singly-quantized vortices in the neighboring cells.

Most calculations were performed on the grid withDx
5Dy5j/16 for L58j and withDx5Dy5j/64 for L54j.
The numerical factoru is determined by the pair-breakin
mechanism. If the lack of the energy gap is connected w
strong electron-phonon relaxation, thenu55.79~Ref. 8!. For
superconductors with a high concentration of magnetic
purities u512 ~Ref. 9!. The time step was in the rang
0.005–0.01 of dimensionless units.

For all values of magnetic field the average magnetiza
was calculated as
14050
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wherek5l/j is the Ginzburg-Landau parameter, andS is
the sample area.

The total vorticity is defined as

N5 R
G
¹~argC!dG/~2p!,

whereG is the perimeter of sample, arg(C) is the argument
of the complex functionC ~i.e., the order parameter phase!.
In the absence of either multiquanta vortices or antivortic
theN simply represents the number of vortices~singularities
of C) in a superconductor. The change in the total vortic
upon varying the magnetic field describes the entrance~or
exit! of vortices.

The introduction of a small, 0.01j30.01j, defect~a piece
of a normal metal! leaves the OP and the current distrib
tions almost undisturbed. Yet such a defect slightly distu

FIG. 1. The magnetization curveM (H) for L58j. The num-
bers near the branches are guides for the eye and denote the
vorticity N in the sample.
FIG. 2. ~Color! Vortex rearrangement scenario forN52. Contour plots of theuCu for H50.34 ~a! andH50.33 ~b!.
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FIG. 3. Dependenced2M /dH2 on H for L58j. The numbers
near the branches are guides for the eye and denote the tota
ticity N in the sample.
14050
the fourfold symmetry of thescheme of numerical simula
tion, which allows us to obtain the branches on the mag
tization curve with an odd total vorticity, whereas a perfe
fourfold symmetric sample provides only even-N branches
~vortices entered into the sample simultaneously from
two opposite edges!.

We observe the Meissner state when the total vortic
N50, and sequential entries of vortices, which produces
ferent branches with different total vorticities on the magn
tization curve~Fig. 1!. We have obtained different vorte
states and studied their behavior under a changing magn
field. One interesting result was observed forN52. We have
observed that the cusp on the 2-vortex branch is cause
rearrangement of two vortices. At a higher magnetic fie
vortices are arranged along the sample diagonal@Fig. 2~a!#,
at lower field the vortices get rearranged along the sam
edge@Fig. 2~b!#.

Also we have observed peaks on some branches on
dependenced2M /dH2 ~see Fig. 3!. Such peaks are caused b

or-
otes the
FIG. 4. ~Color! Contour plots of theuCu for ~a! double-quantized vortex (H50.65) and~b! 3F0-molecule situated in the center (H
51.26, N57). The white circles denote singly-quantized vortices, the white square denotes the double-quantized vortex.

FIG. 5. ~Color! The contour plot of theuCu for H52.15Hc2 , L54j in an ideal square~a! and in a square with a small defect~b! of the
size 0.16j30.08j shown by the blue rectangle on the upper edge. The white circles denote the vortices, the green triangle den
antivortex.
3-3



-

. A

a
ine

or.
al
x
tiz

-
en
te

al
ur
Th
he
e

te
re
n-

ze
er
an

t
de
f

f t
e
am

ace

or-
the
ns.
l

ble-
rtex
e-

the
s

in a
ula-

rves.
ar-
and
the
tex
ized
ices
tion

be
e up-
nd
gle
orti-
n of
nted
cally
ex-

his
ce
ve
tion
-02-
ces

RAPID COMMUNICATIONS

A. S. MEL’NIKOV et al. PHYSICAL REVIEW B 65 140503~R!
dissociation of three-vortex molecule~for N57), and by de-
cay of the double-quantized vortices~for N52 andN56)
which are situated in the center of specimen~see Fig. 4!.

In a recent work1 Chibotaruet al. report obtaining a vor
tex arrangement with an antivortex forN53 at the upper
critical field Hc3 in a square mesoscopic superconductor
the certain values of the sample size (3.8,L/j,4.5) they
have found a vortex state with four vortices on the diagon
and one antivortex in the center of the square. We obta
such a vortex state@Fig. 5 ~a!# for the sample withL54j
near the upper critical field (H52.15Hc2 , Hc3.2.18Hc2).
HereHc2 is the upper critical field in a bulk superconduct

We conjecture that this vortex configuration of a sm
size 0.19j30.19j is realization of a triple-quantized vorte
in a square superconductor. Let us consider a triple-quan
vortex within the expansion in series of harmonicsC
5(Rn(r )einu. As emphasized in Ref. 1, the fourfold sym
metry of a sample strongly influence the vortex arrangem
therefore, the dominant term for the triple-quantized vor
R3(r )e3iu generates additional termsR314m(r )e(314m) iu

(m50,61,62, . . . ). Since at small distancesRn}r unu, the
OP C.a(r /LH)e2 iu1(r /LH)3e3iu ~whereLH5A\c/(eH)
&j is the magnetic length in the vicinity of the upper critic
field!, which yields one antivortex in the center and fo
vortices around the antivortex in the vertices of a square.
generation of theR21 harmonic is necessary to satisfy t
boundary condition at the sample edge and can be consid
as a superposition of four Gaussian-like nuclei with cen
near the square boundary and characterized by four diffe
phaseswn523pn/2 (n50,1,2,3). Close to the square ce
ter such a superposition gives us theR21 harmonic witha
;L/LH exp„2(L/LH)2/4…. So we can conclude that the si
r 0 of such vortex-antivortex configuration is naturally det
mined by the factorj/L and appears to be much smaller th
the coherence length even forL54j: r 0 /LH;AL/LH
3exp„2(L/LH)2/8….

In order to examine a stability of such a vortex state
fourfold symmetry distortions we set a small rectangular
fect of a normal metal asymmetrically on one edge o
sample. Starting with the size 0.01j30.02j we have in-
creased the square of defect and observed distortion o
vortex state mentioned above: the antivortex came clos
one of the vortices and when the size of defect bec
0.16j30.08j this vortex-antivortex pair annihilated@Fig.
h-
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5~b!#. Note that all through the above calculations the sp
resolution was quite high:Dx5Dy5j/64. Thus we come to
a conclusion that this vortex configuration with one antiv
tex and four vortices is very sensitive to distortions of
symmetry, which may be caused by defects or fluctuatio

We would like to point out that similarly to the nontrivia
structure of a triple-quantized vortex in a square, a dou
quantized vortex in a triangle also consists of an antivo
and three vortices.10 This vortex arrangement can be d
scribed in the vicinity of the core as follows:C.a2r 2e2iu

1a21re2 iu since according to the boundary conditions
dominant term R2(r )e2iu generates additional term
R213m(r )e(213m) iu (m50,61,62, . . . ).

In conclusion, we have derived different vortex states
square mesoscopic superconductor using numerical sim
tions of the time-dependent Ginzburg-Landau~TDGL! equa-
tions and calculated the corresponding magnetization cu
We have identified different modifications of the vortex
rangement with peculiarities in the magnetization curves
their derivatives. In particular, we identified the cusps on
second derivative of the magnetization curve with the vor
molecule dissociation and the decay of a double-quant
vortex. We have found that a rearrangement of two vort
leads to a kink on the 2-vortex branch of the magnetiza
curve.

We have also found that a triple-quantized vortex can
realized in a square mesoscopic superconductor near th
per critical fieldHc3 as a vortex state with one antivortex a
four vortices just as a double-quantized vortex in a trian
superconductor is realized as one antivortex and three v
ces. Such vortex states are very sensitive to any distortio
the symmetry, like defects or fluctuations. We have prese
a symmetry approach that enabled us to evaluate analyti
the conditions for the existence of the complex vort
antivortex configurations.
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