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Abstract
We analyze the surface plasmons (SPs) propagating along optically pumped single-graphene
layer (SGL) and multiple-graphene layer (MGL) structures. It is shown that at sufficiently
strong optical pumping when the real part of the dynamic conductivity of SGL and MGL
structures becomes negative in the terahertz (THz) range of frequencies due to the interband
population inversion, the damping of the THz SPs can give way to their amplification. This
effect can be used in graphene-based THz lasers and other devices. Due to the relatively small
SP group velocity, the absolute value of their absorption coefficient (SP gain) can be large,
substantially exceeding that of optically pumped structures with dielectric waveguides. A
comparison of SGL and MGL structures shows that to maximize the SP gain the number of
graphene layers should be properly chosen.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical excitation of graphene can result in interband
population inversion [1, 2]. At sufficiently strong excitation,
the interband emission of photons can prevail over the
intraband (Drude) absorption. In this case, the real part
of the dynamic conductivity Re σω becomes negative. Due
to the gapless energy spectrum of graphene [3], Re σω can
be negative at relatively low frequencies ω, for instance,
those in the terahertz (THz) range. This effect can be
used in graphene-based THz optically pumped lasers with
Fabry–Pérot resonators and resonators based on dielectric
or slot-line waveguides [4–6]. As was previously pointed
out [1] and analyzed [7], apart from the lasing associated
with the stimulated generation of electromagnetic modes,
the stimulated generation of different plasmons (with their
conversion into electromagnetic radiation) can also be of
practical interest. The plasma excitations in graphene
associated with the electrons and holes in the conduction and
valence bands, respectively, were considered, in particular,

in [8–14]. In particular, in [13, 14], electromagnetic
surface plasmons (SPs) with the electric and magnetic
fields located near a graphene layer were studied; in the
latter paper, the propagation and damping of SPs in the
equilibrium electron–hole system. In this paper, we study
the propagation of electromagnetic SPs in graphene structures
under nonequilibrium conditions when Re σω < 0 due
to optical pumping and, as demonstrated, amplification is
possible. We consider single-graphene layer (SGL) and
multiple-graphene layer (MGL) structures on a substrate.
As demonstrated recently (see the review paper [15] and
references therein), the MGLs, which constitute stacks
of disoriented (non-Bernal stacked) graphene layers (GLs),
exhibit similar electron and optical properties to individual
GLs, while the electron momentum relaxation time in such
MGLs can be extremely long. The latter circumstance implies
that the intraband absorption of photons and plasmons can
be effectively diminished. This makes the MGLs good
prospects for different optoelectronic devices considering
that the net dynamic conductivity along GLs increases with
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increasing their number in the MGL structure. MGL
structures can be particularly effective in lasers in which
the THz modes are supported by the external resonator or
waveguide [5, 6], THz photodetectors [16–18], and transit-
time THz oscillators [19, 20]. However, SGL and MGL
structures can play a dual role: the imaginary part of their
dynamic conductivity provides the mode localization near the
SGL or MGL (i.e., the formation of SPs), while the real part
provides absorption or amplification of SPs. Due to this, MGL
structures as SP waveguides are not always superior over SGL
structures.

Since the thickness, d , of an MGL structure with
even relatively large number, K , of GLs is rather small in
comparison with the wavelength of SPs under consideration,
we shall consider the SGL and MGL structures alike. Real
MGL structures usually include a highly conducting bottom
GL (at the interface between the substrate and the other GLs)
with rather high electron density [15, 21]. Although this
bottom GL can be in some way removed, we will take it into
account.

It is assumed that the SGL or MGL structure is illuminated
from the top by light with the energy of photons h̄�, and SPs
propagate along the SGL/MGL plane as shown in figure 1.
Under optical excitation, the electron and hole densities exceed
substantially their equilibrium values. Due to this, one can
consider the electron and hole systems under consideration as
characterized by the quasi-Fermi energies ±ε

(k)
F , respectively,

and the effective temperature T . A distinction in the Fermi
energies in GLs with different indices is due to the attenuation
of incident optical radiation associated with its absorption in
the GLs closer to the top of the structure: ε

(k)
F < ε

(K )
F =

εT
F . The electron–hole system in the bottom GL in MGLs is

characterized by the unified Fermi energy εB
F determined by the

doping of this GL. If the characteristic time, τ0, of the emission
of the optical phonon by an electron or a hole is much shorter
than the time of pair collisions, the photoexcited electrons and
holes emit a cascade of optical phonons and occupy low energy
states in the conduction and valence bands, respectively. In this
case, the contribution of optical excitation to the heating of the
electron–hole system is small, so that the effective temperature
T is close to the lattice temperature Tl [22]. Moreover,
some cooling of the electron–hole system can occur [23]. In
the opposite case, the photoexcited electrons and holes are
thermalized, and their effective temperature is determined by
the pumping photon energy h̄� and the rate of electron and
hole energy relaxation. In such a situation, the effective
temperature can be elevated, so that somewhat stronger optical
pumping might be needed to fulfil the condition Re σω <

0 [23, 24].

2. Dynamic conductivity of SGL and MGL structures

The net dynamic conductivity in the lateral direction of a
structure with K GLs at the signal frequency ω can be
presented as the sum of the contributions of the individual GLs
σ (k)

ω (k = 1, 2, . . . , K ) and the bottom GL σ B
ω :

σω =
K∑

k=1

σ (k)
ω + σ B

ω . (1)

Figure 1. Schematic view of the SGL/MGL structure under
consideration. Wavy arrows show the direction of incidence of
pumping radiation (perpendicular to the SGL/MGL plane) with
photon energy h̄� and the direction of propagation (along this plane)
of SPs with frequency ω.

Considering the expressions for σ (k)
ω and σ B

ω obtained
previously (see, for instance, [10, 25], as well as the recent
review paper [26]), one can arrive at the following:

σ (k)
ω =

(
e2

4h̄

){
8kBT τ

π h̄(1 − iωτ)
ln

[
1 + exp

(
ε

(k)
F

kBT

)]

+ tanh

(
h̄ω − 2ε

(k)
F

4kBT

)

− 4h̄ω

iπ

∫ ∞

0

G(ε, εk
F) − G(h̄ω/2, εk

F)

(h̄ω)2 − 4ε2
dε

}
, (2)

σ B
ω =

(
e2

4h̄

)
4kBT τB

π h̄(1 − iωτB)
ln

[
1 + exp

(
εB

F

kBT

)]

+
(

e2

4h̄

){
1 −

[
1 + exp

(
h̄ω/2 − εB

F

kBT

)]−1

−
[

1 + exp

(
h̄ω/2 + εB

F

kBT

)]−1

−4h̄ω

iπ

∫ ∞

0

G(ε, εB
F ) − G(h̄ω/2, εB

F )

(h̄ω)2 − 4ε2
dε

}
. (3)

Here, e is the electron charge, τB and τ are the electron
and hole momentum relaxation times in the bottom and other
GLs, respectively, h̄ is the reduced Planck constant, kB is the
Boltzmann constant, and

G(ε, ε′) = sinh(ε/kBT )

cosh(ε/kBT ) + cosh(ε′/kBT )
. (4)

In the case of an SGL structure, one should put K = 1 and
σ B

ω = 0. For the MGL structures without the bottom GL, one
can use equation (3) formally setting σ B

ω = 0.
The quasi-Fermi energies in the GLs with k � 1,

ε
(k)
F , are mainly determined by the electron (hole) density

in this layer, �k , with ε
(k)
F ∝ √

�(k) (at sufficiently strong
degeneracy of the electron and hole systems), i.e., by the rate
of photogeneration G(k)

� by the optical radiation at the kth GL
plane. Considering the attenuation of the optical pumping
radiation due to its absorption in each GL, one can obtain
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that ε
(k)
F can be expressed via the quasi-Fermi energy in the

topmost GL, εT
F = ε

(K )
F , which, in turn, is a function of the

intensity of incident pumping radiation I�. Considering the
MGL structures, the ε

(k)
F versus εT

F dependence was found as
previously [6].

3. Dispersion equation for SPs

We consider SPs propagating along the z-direction in the plane
(yz-plane) of an SGL/MGL structure at the interface between
a substrate with the refraction index (generally complex) n and
the vacuum (see figure 1). The SP electric and magnetic fields,
E = (Ex , 0, Ez) and H = (0, Hy, 0), are governed by the
Maxwell equations, which in the situation under consideration
can be presented in the following form:

∇ × E = 1

c

∂H
∂ t

, ∇ × H = 4π

c
j − n2

c

∂E
∂ t

. (5)

Here, c is the speed of light and j is the density of the current
(per unit length in the y-direction), which is created by the
electrons and holes under the z-component of the SP electric
field Ez . The components of j are given by

jx = 0, jy = 0, jz = σω Ez δ(x), (6)

where δ(x) is the Dirac delta function. The latter reflects the
fact that the thickness, d , of the MGL structure (and, certainly,
of the SGL structure) is much smaller than the width of the
SP electric and magnetic field localization near the SGL/MGL
plane, and, hence, the current can be considered as localized at
x = 0.

Searching for the components of the electric and magnetic
fields in the form of a wave propagating in the z-direction,

E = E exp

(
i
ω

c

√
1 − ρ2x + i

ω

c
ρz − iωt

)
,

H = H exp

(
i
ω

c

√
1 − ρ2 x + i

ω

c
ρ z − iω t

)
,

where E and H are the amplitudes of the fields, equations (5)
and (6) can be rewritten as

∂ Ez

∂x
= i

ω

c
(1 − ρ2)H y (x � 0),

∂ Ez

∂x
= i

ω

c

(
1 − ρ2

n2

)
H y (x < 0),

H y

∣∣∣∣
x=0+

− H y

∣∣∣∣
x=0−

= 4π

c
σω Ez.

(7)

Here, ω is the SP frequency and ρ is the complex propagation
index (which relates to the wavenumber qz = ρω/c). Solving
equations (7), we obtain the following dependences of the
amplitudes Ez and H y on the coordinate x :

Ez = Ae(i ω
c

√
1−ρ3 x) (x � 0),

Ez = Ae(i ω
c

√
n2−ρ3 x) (x < 0),

H y = Be(i ω
c

√
1−ρ3 x) (x � 0),

H y = Ce(i ω
c

√
n2−ρ3 x) (x < 0),

(8)

where A, B , and C are constants. As usual, invoking the
condition of the existence of a nontrivial solution of the above
equations, we arrive at the following dispersion equation for
SPs:

√
n2 − ρ2+n2

√
1 − ρ2+ 4π

c
σω

√
1 − ρ2

√
n2 − ρ2 = 0. (9)

Equation (9) can also be derived using a different
approach [13, 14]. It is important for the present consideration
that σω is determined by both nonequilibrium electron and hole
components with, in particular, Re(σω) < 0. This is in contrast
to the studies of SPs in the cases when the electron–hole system
is in equilibrium. Solving equation (9) with respect to ρ, one
can find the propagation index Re(ρ) and the SP absorption
(amplification) coefficient 2 Im(q) = 2 Im(ρω/c) or the SP
gain −2 Im(q) as a function of the frequency ω. In the cases
when n = 1 (SGL or MGL structure levitating in free space),
equation (9) obviously yields

ρ =
√

1 − c2

4π2σ 2
ω

. (10)

4. Results of calculations

4.1. SP spectra and SP damping/amplification

Figure 2 presents the frequency dependences of the real part
of the propagation index Re(ρ) ∝ Re(q) shown by solid lines,
calculated for SGL structures with different substrate refraction
indices n at different temperatures T and different values
of the quasi-Fermi energies εT

F (i.e., for different pumping
intensities). The electron and hole momentum relaxation time
τ was set to be rather long: τ = 10 ps. Such values can be
realized in sufficiently perfect MGL structures (see [27], as
well as the review paper [15], in which the experimentally
obtained value τ � 20 ps at temperatures up to 55 K was
reported). Much smaller values of τ (τ = 1, 0.54, and 0.1 ps)
were also used in our calculations (see below). The dotted
lines in figure 2 correspond to the frequency dependences of
the group velocity of SPs normalized by the speed of light
in a vacuum, c. In our model we disregarded the effect
of spatial dispersion on the dynamic conductivity of SGL
and MGL structures, i.e., the dependence of σω on the SP
wavenumber qz in equations (1)–(4). This is valid if ρ < c/vW

or ω < Re(qz)vW [10], where vW = 108 cm s−1 is the
characteristic velocity of electrons and holes in graphene. In
the case of SGL structures with n = 1, these inequalities
are satisfied in the frequency range under consideration (see
figures 2 and 3). However, as follows from figure 2 at larger
n, the validity of the dependences obtained is limited by
relatively low frequencies (ω/2π � 5–8 THz for n = 3.4
at T = 300 K). One can see from figure 2 that the SP
group velocity can be negative (at T = 77 K) at elevated
frequencies. This corresponds to backward waves [28, 29]
and occurs at the frequencies at which the imaginary part
of the dynamic conductivity is determined primarily by the
interband transitions. For convenience, figure 3 shows the
spectra of SPs, i.e., ω versus Re (qz) dependences in the
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Figure 2. Frequency dependence of the real part of the propagation index Re(ρ) (solid lines) and the SP group velocity normalized by the
speed of light (dotted lines) in SGL structures at different temperatures (T = 300 and 77 K) and different quasi-Fermi energies
(1—εT

F = 0 meV, 2—εT
F = 10 meV, and 3—εT

F = 20 meV) for SGL structures with different substrate refraction indices (n = 1.0 and 3.4).
The dashed and dashed–dotted lines in the figures for n = 3.4 correspond to the ranges where the effects of spatial dispersion might be
essential.

Figure 3. Dispersion of SPs in an SGL structure at T = 300 K (solid
lines) and T = 77 K (dashed lines) with the same values of the
quasi-Fermi energy as in figure 2.

SGL structures at different temperatures at the same pumping
conditions as in figure 2. As follows from figure 3, SPs with
large wavenumbers qz ∼ 105 cm−1 and, hence, with rather
short wavelengths λ ∼ 1 μm and less are in the THz range.

Figure 4 shows the SP absorption coefficient 2Im (qz) as
a function of frequency, calculated for different temperatures
T and different values of the quasi-Fermi energies εT

F . One
can see that an increase in εT

F leads to widening of the

frequency range where Im(qz) < 0 and a marked increase
in the absolute value of the absorption coefficient in this
range. The dependences indicated by markers were calculated
for equilibrium SGLs using the above formulas, which in
the absence of optical pumping at n = 1 coincide with
those obtained previously [13]. The markers correspond to
intrinsic (with the Fermi energy εF = 0) and doped SGL
structures. The dependences for doped GL structures at
equilibrium correspond to the Fermi energies εF in doped
SGLs at equilibrium equal to the quasi-Fermi energies
εT

F in the optically pumped SGLs. Clear distinctions in
these dependences in the equilibrium and pumped GLs are
associated with the contributions of both electrons and holes
to the negative dynamic conductivity due to the interband
transitions (in the latter).

Figure 5 shows the spatial distributions (in the direction
perpendicular to the SGL plane) of the SP electric and
magnetic fields in SGL structures with different substrate
refraction indices. The obtained spatial distributions
demonstrate pronounced localization of the SP electric and
magnetic fields near the SGL plane. One can see that an
increase in the SP frequency and the substrate refraction index
leads to a stronger localization.

4.2. The role of substrate and intraband absorption

Figure 6 shows the frequency dependences of the SP
absorption coefficient calculated for SGLs with substrates
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Figure 4. Frequency dependences of the SP absorption coefficient 2 Im(q) in an SGL structure at T = 300 K (left panel) and T = 77 K (right
panel) and for different quasi-Fermi energies (1—εT

F = 0 meV, 2—εT
F = 10 meV, and 3—εT

F = 20 meV). The markers show the dependences
for equilibrium electron–hole systems calculated using the derived formulas as well as using [13] for intrinsic and doped SGL structures.

Figure 5. Spatial distributions of the real parts of the electric and magnetic fields in SGL structures at different frequencies (left panel) and
different substrate refraction indices (right panel): T = 300 K, εT

F = 20 meV, and τ = 10 ps.

with different real and imaginary parts of the refraction
index (different absorption in the substrate). An increase
in the substrate refraction index and, consequently, stronger
localization of the SP electric and magnetic fields, as
demonstrated in figure 5, results in markedly larger absolute
values of the absorption coefficient in the frequency range
where it is negative (compare curves 1 and 2 in figure 6).
However, as follows from the comparison of curves 2 and 3 in
figure 6, the contribution of the substrate to the SP absorption
can be relatively weak at realistic values of the imaginary part
of the substrate refraction index. In particular, in the case of
the substrate made of undoped Si (Im (n) � 3 × 10−4 [30]),
the imaginary part of the refraction index can be smaller
than those used in the calculations of curves 3–5 in figure 6.
Naturally, at large values of the imaginary part of the substrate
refraction index corresponding to curves 4 and 5, the effect of
the substrate on the SP absorption can be pronounced and lead
to a positive net absorption coefficient, i.e., to SP damping.

Figure 7 shows the frequency dependences of the real part
of the propagation index and the SP absorption coefficient.
These dependences were calculated for SGL structures with
different electron and hole momentum relaxation times (τ =
10 and 0.1 ps) for different εT

F , i.e., for different pumping
intensities, assuming that T = 300 K. As seen from figure 7, in
the SGL structure with a relatively long momentum relaxation

Figure 6. Frequency dependences of SP absorption for SGL
structures with different substrate refraction indices n: 1—n = 1.0,
2—n = 3.4, 3—n = 3.4 + i0.01, 4—n = 3.4 + i0.05, and
5—n = 3.4 + i0.1 (T = 300 K, εT

F = 20 meV).

time (τ = 10 ps), the SP absorption coefficient changes its
sign at moderate values of εT

F (εT
F � 20 meV). However when

τ = 0.1 ps, the SP absorption coefficient does not change
its sign at least at εT

F ∼ 20 meV (see below), although it is
markedly smaller than in the equilibrium conditions (without
pumping). However, at elevated pumping intensities (elevated
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Figure 7. Real part of the SP propagation index (left panel) and absorption coefficient (right panel) in SGL structures as functions of
frequency: 1—εT

F = 0 meV, τ = 10 ps, 2—εT
F = 0 meV, τ = 0.1 ps, 3—εT

F = 20 meV, τ = 10 ps, and 4—εT
F = 20 meV, τ = 0.1 ps.

Figure 8. SP absorption coefficient as a function of the quasi-Fermi
energy in SGL structures with short momentum relaxation time
(τ = 0.1 ps) at 1—ω/2π = 15 THz, 2—ω/2π = 20 THz,
3—ω/2π = 25 THz.

values of the quasi-Fermi energy) the absorption coefficient
in the SLG structures even with short momentum relaxation
times can become negative, although at higher frequencies
(see figure 8). Indeed, as seen from figure 8, SPs with the
frequencies ω/2π = 15–25 THz can be amplified in SGLs
with rather short electron and hole momentum relaxation times
(τ = 0.1 ps) if εT

F > 40 − −55 meV.

4.3. Comparison of SGLs and MGLs

In figures 9 and 10, we compare the real parts of the
SP propagation index, absorption coefficients, and the SP
group velocities in the optically pumped SGLs and MGLs
(εT

F = 20 meV). As seen, the SP characteristics in SGLs
and MGLs are markedly different. In particular, SGLs
exhibit substantially stronger (about 50 times in the peaks)
amplification (higher plasmon gain) in a wide frequency range
(from 4 to 8 THz) at τ = 10 ps. This is attributed to markedly
different values of the SP group velocities in SGLs (relatively
small plasmon group velocity) and in MGLs (in which this
velocity is relatively high), as shown in figure 9, which, in turn,
is due to different net electron and hole densities and different
widths of the SP electric field localization that are clearly
seen in figure 11. An example of the dependence of the SP

Figure 9. Frequency dependences of the real part of the SP
propagation index (solid lines) and the normalized group velocity
(dashed lines) for an SGL structure (K = 1) and an MGL structure
(K = 20) at εT

F = 20 meV.

Figure 10. Frequency dependences of the SP absorption coefficient
at εT

F = 20 meV for an SGL structure with 1—τ = 10 ps,
2—τ = 1.0 ps, and 3—τ = 0.54 ps, and for an MGL structure with
K = 20 (dashed line) and τ = 10 ps.

absorption coefficient in the structures with optically pumped
GLs on the number of layers is demonstrated in figure 12.
Thus, at the same values of the optical pumping intensity
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Figure 11. Spatial distribution of the real parts of the SP electric and
magnetic fields in an SGL structure and MGL structures with
K = 20 at T = 300 K, εT

F = 20 meV, τ = 10 ps and
ω/2π = 6 THz.

and the electron and hole momentum relaxation time, SPs in
SGL structures can exhibit stronger amplification than MGL
structures. However, as demonstrated [15, 27], the momentum
relaxation time in epitaxially grown MGLs can be rather long,
so MGL structures might be preferable in applications. Taking
into account the real possibility of a large difference in the
electron and hole relaxation times in SGL and MGL structures,
in figure 10, we demonstrate that the SP amplification in the
MGL structure with K = 20 and τ = 10 ps can exceed that
in the SGL structure with smaller τ . Hence, to achieve the SP
maximum gain, the number of GLs should be optimal.

A decrease in the SP gain with increasing K is in contrast
to the behavior of the electromagnetic modes in the optically
pumped MGL structures with dielectric waveguides considered
by us previously [6]. For comparison, the pertinent dependence
taken from [6] for the waveguide thickness L = 5 μm (at
the same quality of GLs and pumping conditions) is shown in
figure 12 as well.

5. Conclusions

We studied the SPs in optically pumped SGL and MGL
structures. Using the developed model, we calculated the SP
dispersion relations, spatial distributions of their electric and
magnetic fields, and frequency dependences of the absorption
coefficient as functions of the optical pumping and factors
determining the intraband absorption in the GLs and the
substrate. It was demonstrated that at sufficiently strong but
realistic optical pumping, the SP absorption coefficient can
be negative (so that the gain is positive) in a certain range
of frequencies. The absolute value of the SP absorption
coefficient (plasmon gain) in an SGL structure can be fairly
large and markedly exceed the gain of electromagnetic modes
in dielectric waveguides with optically pumped SGL or
MGL structures. In contrast to the cases of amplification
of electromagnetic modes in the structures with optically
pumped SGLs and MGLs and dielectric waveguides, the SP
amplification weakens with increasing number of GLs, K .
However, due to the possibility of rather long momentum

Figure 12. Absorption coefficients of SPs (solid line) and an
electromagnetic mode (dashed line) in a dielectric waveguide
(DW) [6] as functions of the number of GLs, K .

relaxation times of electrons and holes in MGL structures, the
SP maximum gain can be achieved at optimal values of the
number of GLs. The effect of SP amplification in optically
pumped SGL and MGL structures can be used in THz lasers
(with the conversion of SPs to output electromagnetic modes).
The variation of the SP characteristics by optical pumping
might be useful in different GL-based plasma-wave devices.

Acknowledgments

The authors are grateful to M Ryzhii for comments. This work
was supported by the Japan Science and Technology Agency,
CREST, Japan and partially by the Federal Russian Program
‘Scientific and Educational Staff’, Russia.

References

[1] Ryzhii V, Ryzhii M and Otsuji T 2009 J. Appl. Phys.
101 083114

[2] Satou A, Vasko F T and Ryzhii V 2008 Phys. Rev. B 78 115431
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and

Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Dubinov A A, Aleshkin V Ya, Ryzhii M, Otsuji T and

Ryzhii V 2009 Appl. Phys. Express 2 034509
[5] Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A and

Aleshkin V Ya 2009 J. Appl. Phys. 106 084507
[6] Ryzhii V, Dubinov A A, Otsuji T, Mitin V and Shur M S 2010

J. Appl. Phys. 107 054505
[7] Rana F 2008 IEEE Trans. Nanotechnol. 7 91
[8] Ryzhii V 2006 Japan. J. Appl. Phys. 2 45 L923
[9] Vafek O 2006 Phys. Rev. Lett. 97 266406

[10] Falkovsky L A and Varlamov A A 2007 Eur. Phys. J. B 56 281
[11] Ryzhii V, Satou A and Otsuji T 2007 J. Appl. Phys.

101 024509
[12] Hwang E H and Das Sarma S 2007 Phys. Rev. B 75 205418
[13] Hanson G W 2008 J. Appl. Phys. 103 064302
[14] Jablan M, Buljan H and Solijacic M 2009 Phys. Rev. B

80 245435
[15] Orlita M and Potemski M 2010 Semicond. Sci. Technol.

25 063001
[16] Vasko F T and Ryzhii V 2008 Phys. Rev. B 77 195433
[17] Xia F, Mueller T, Lin Y-m, Valdes-Garcia A and

Avouris F 2009 Nature Nanotechnol. 4 839

7



J. Phys.: Condens. Matter 23 (2011) 145302 A A Dubinov et al

[18] Ryzhii V, Ryzhii M, Mitin V and Otsuji T 2010 J. Appl. Phys.
107 054512

[19] Ryzhii V, Ryzhii M, Mitin V and Shur M S 2009 Appl. Phys.
Express 2 034503

[20] Ryzhii M, Ryzhii V, Otsuji T, Mitin V and Shur M S 2010
Phys. Rev. B 82 075419

[21] Varchon F et al 2007 Phys. Rev. Lett. 99 126805
[22] Ryzhii V, Ryzhii M and Otsuji T 2008 Phys. Status Solidi c

5 261
[23] Ryzhii V, Ryzhii M, Mitin V, Satou A and Otsuji T 2011

arXiv:1102.2026 [cond-mat.mes-hall]

[24] Satou A, Otsuji T and Ryzhii V 2010 Abstract ISGD2010: 2nd
Int. Symp. on Graphene Devices: Technology, Physics, and
Modeling (Sendai, Oct. 2010)

[25] Falkovsky L A and Pershoguba S S 2008 Phys. Rev. B
103 064302

[26] Peres N M R 2010 Rev. Mod. Phys. 82 2673
[27] Neugebauer P, Orlita M, Faugeras C, Barra A-L and

Potemski M 2009 Phys. Rev. Lett. 103 136403
[28] Oliner A A and Tamir T 1962 J. Appl. Phys. 33 231
[29] Novotny L and Hafner C 1994 Phys. Rev. E 50 4094
[30] Palik E D 1998 Handbook of Optical Constants of Solids

(New York: Academic)

8


