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Deep-Water Acoustic Coherence at Long Ranges:
Theoretical Prediction and Effects on
Large-Array Signal Processing

Elena Yu. Gorodetskaya, Alexander |. Malekhanov, Alexander G. Sazontov, and Nadezhda K. Vdovicheva

Abstract—This paper presents results of combined consider-  Following the general idea of spatial-temporal processing
ation of sound coherence and array signal processing in long- factorization, we restrict ourselves to the study of coherence
range deep-water environments. Theoretical evaluation of the effects in the spatial domain, which is of primary interest
acoustic signal mutual coherence function (MCF) of space for . - : .

a given sound-speed profile and particular scattering mechanism in large-array b?_amform'ng' The F_)mblem of array pFOCESSIrtlg
is provided. The predictions of the MCF are employed as input Under the conditions of reduced signal coherence was studied
data to investigate the coherence-induced effects on the horizontal earlier by several authors [3]-[6] on the basis of a general
and vertical array gains associated with linear and quadratic theory of random signal detection against the noise background
beamformers with emphasis on the optimal ones. A method of 171 18] byt without invoking specific models for underwater
the radiation transport equation is developed to calculate the .

MCF of the multimode signal under the assumption that internal sound coherence. On the other hand, the SUb]e_CtS of numerous
waves or surface wind waves are the main source of long-range WOrks on ocean acoustic coherence were restricted, as a rule,
acoustic fluctuations in a deep-water channel. Basic formulations to the propagation problem itself.

of the array weight vectors and small-signal deflection are then In this paper, we present our recent results on combined
exploited to examine optimal linear and quadratic processors in consideration of the sound wavefield coherence and array
comparison with plane-wave beamformers. For vertical arrays, . S -

particular attention is paid also to evaluation of the ambient s[gr.lal processmg In Iong-range. d'eep-water.enwron.ments. A
modal noise factor. The numerical simulations are carried out distinctive feature of our study is incorporating detailed cal-
for range-independent environments from the Northwest Pacific culations of the total signal MCF of space [9]—-[11] to predict
for a sound frequency of 250 Hz and distances up to 1000 km. the coherence effects on the array beam pattern and gain for

It was shown distinctly that both signal coherence degradation ge\erg| types of linear and quadratic processors, including the
and modal noise affect large-array gain, and these effects are .
optimal ones [12]-[14].

substantially dependent on the processing technique used. Rough ) .
surface sound scattering was determined to cause the most The scheme of our study is outlined as follows. For calcu-

significant effects. lations of the ocean acoustic MCF, we develop a technique of
Index Terms—Array beamforming, long-range propagation, the radiation transport equation_(RTE) and deriye in a closed
mutual coherence function, radiation transport equation, random form a useful approximate solution for the multimodal MCF.
scattering. In our comparative analysis of array processors, we exploit, as
a basic approach, the eigenvalue—eigenvector decomposition
of the signal covariance matrices. Generally, this approach
can be effectively used for various detection criteria, includ-
ONG-RANGE acoustic signal propagation in underwatghg maximum likelihood (ML) and maximum signal-to-noise
channels is known to lead to loss of the signal coherenggNR). Our particular interest here concerns the small-signal
in space, time, and frequency, which results from multiplgsymptotics of the ML detection performance, which is a
sound scattering by random inhomogeneities of the oceapiasonable choice for long-range underwater acoustics.
medium (see, e.g., [1], [2]). From an application point of The body of this paper follows the scheme summarized
view, the knowledge of the spatial-temporal mutual coherenggove. The wave-theoretical model of acoustic transmission
function (MCF) of the registered acoustic field is of thgn a random-inhomogeneous oceanic waveguide is reviewed
utmost importance to optimize signal processing techniqugsSection II, which contains a brief discussion of the RTE
and, therefore, to decrease a coherence-induced degrada@@fnique that has been developed to calculate the ocean
of the processor performances. acoustic MCF for long-range multimode propagation. We
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medium fluctuations and fully developed wind seas are em-Most of the research using the normal-mode decomposition
ployed to show in detail the acoustic coherence effects on thas been restricted primarily to the average wavefield intensity
array beampattern and gain for several types of beamformergolution that was obtained by means of a diffusion approach

including both horizontal and vertical array configurationg17], [20], [27], [28] when a discrete set of guided modes
Finally, in Section V, we summarize the results obtained ansl regarded as a continuum. The analytical works concerning
give the most essential conclusions from this study. the correlation characteristics of a multimode signal have
also been tried by the use of a matrix analog of the Rytov

approximation, although their results are applicable only to

[I. OCEAN AcousTiC COHERENCE cases of relatively short propagation distances [26], [30], [32].
WAVE-THEORETICAL DESCRIPTION Considerable progress in the theoretical study of acoustic
gherence for a large class of scattering models in long-range

The acoustic propagation problem in a random ocean Y ) has b | hieved by S
of great interest for various applications concerned with u?_cean environments has been recently achieved by Sazontov

derwater detection, communication, and ocean acoustic 81 [10], th_) proposed an efﬂment method for solving the
mography. The significant and unusual characteristics of tRd E fo_r multimodal propagatlon. BeloW’ we present a useful
ocean medium are the presence of an underwater so &)roglmate_z wave-tr_leoretlcal expression _for the to_tal MCF
channel and the anisotropy and inhomogeneity of the sou lich is valid fqr a ‘_N'de range of rgfrgctwe index profiles and
speed fluctuations. Thus, the study of the combined effel{PeS of scattering irregularities. It is important 0 have such.a
of anisotropic scattering and regular refraction on acousﬁelu“on since It enabIe; one to study the ?.COUSIIC propagation
coherence is of great importance in understanding statisti@ﬁ'ld loss of coherence in deep-water environments.
behavior of oceanic sound transmission. From the theoretical

point of view, analysis of this problem reduces to evaluatirg- Volume Scattering: Problem Formulation

the MCF of space, time, and frequency. The MCF contains Consider an underwater sound channel of depth in
important statistical properties of the acoustic field that hggich the refractive index is the sum of the deterministic

traversed a medium with random fluctuations. background profileno(») depending on vertical coordinate
z and of the stochastic fielg(r, »,¢) modeling the acoustic
A. Preliminaries medium fluctuations. Here; = (z,y) is the horizontal two-

. L . i dimensional (2-D) position vector ant is the time. The
Systematic investigations examining the propagation of thgqginate system is chosen with theaxis downwards. The

MCF in a refractive oceanic waveguide containing random ”b'erturbationu is assumed to be a Gaussian random variable

homogeneities have recently been carried out in the framewoikh, >aro mean and can be described by its autocorrelation
of a ray-oriented approach using the path integral formalisty, tion

The predictions of acoustic coherence from the path integral
theory and its comparisons with single-receiver measurement§u(ry, z1, t1)pu(rs, 22,t2)) = Bu(|r1 — rao|, 21, 22, t1 — t2).
are fairly well summarized in the book by Flate al. [1]. It
should be noted that a solution for the MCF equivalent to th&he angular brackets - -) indicate ensemble averaging.
obtained by path integral methods can be derived as the firstet a nondirectional acoustic source be located at coor-
approximation of the second moment equation when only oflnates (0, zo) and emit a signal having time dependence
path of multipath configuration is treated [15], [16]. g(t) = s(¢t) exp(—iwpt), Wherewy = 2 f denotes the radian
For low-frequency long-range multipath propagation, thegarrier frequency. In terms of normal modes, the complex
is an effective alternative approach based upon the norme@nvelope of the acoustic pressure figi(r, z, ) in an irregular
mode method. The use of this treatment introduces the effecosanic channel far enough from a source can be formally
the sound-speed profile in a direct and systematic way. Appliegpresented by
to ocean acoustics, the modal approach has been developed in

. . . 0o M(w)
a series of publications (see, e.g., [17]-[32]. The statistical _ it
description of stochastic waveguide propagation usually deaIsP(r’Z’t) e dw g(w)e z_:l Pa(r,w, )ipn(z,w)

with a set of differential equations for the self-modal and @
cross-modal coherence functions that predict the evolution in

range for both the energy and correlation characteristics of gRere g(w) is the frequency spectrum of the transmitted
underwater acoustic field. These equations can be solvedsi@'haL ©n(z,w) denotes thenth vertical eigenfunction of
least with the aid of a computer. For a low-frequency regimghe deterministic background medium associated with the
a general computer program has been developed by Dozier gfgbnvalues? (w), M is the number of propagating modes,
Tappert [21] and Beilis and Tappert [22] to evaluate the effeciqid p, (r,w, ¢) are the random normal mode amplitudes. In
of volume and rough surface scattering on transmission |Q§ﬁting (1), we ignored the far-field contribution from the

as a function of range and depth in a canonical-model rand@fddes of continuous spectrum. The normal mode functions
ocean. However, when a large number of propagating modeg;is ;. .) satisfy the eigenvalue problem

present, the numerical integration becomes rather cumbersome

and, hence, there is a need to develop approximate analytical d?
methods. b app Y Taen(zmw)+ [k2n3(2) — 62(w)]n(z,w) =0 (2)
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together with appropriate boundary conditions and an dWCF applied to the stochastic waveguide propagation requires
thonormality relation, i_e_J'OH dz on(2,w)om(z,w) = &.m. knowledge of the cross-modal coherence functibpg (1, 2).
Here, k = w/co, wherecy is some reference sound speed. In [32], the basic RTE for the cross-modal MCF,,,,(1, 2)

In a waveguide with large-scale (compared to the wavtgken at two horizontal position pointg = (x,41), r2 =
length) inhomogeneities, where the forward scattering is &g+ y2) in the samer plane at two different times and frequen-
sumed to be essential, we shall use the spatial coordinates was derived from (3) under the Markov approximation

system with ther axis taken in the main direction of wave 9 52 ; e 1 a2
propagation. For forward fropaganon, if we let {— - ""‘8 R 25"’"<8_p2 + Zﬁ)}rnm(l 2)
P (r,w,t) = —pn(r,w,t)cm”(‘“)’”
Iin(w) = _5 ZAnn’(lal)Fn’m(l’2)
one obtains from the original wave equation the parabolic "
coupled-mode equations for the slowly varying coefficients + ZA (2, 2) D (1,2)
pn(r’w’t) rn, I nm
3] i 0? Z A""" (1,2) (8)
R — n t TL m bl
<8x Zlin( )au )p (r W ) n’ m’
=i Y Vam(r,w, )pm(r, w, 1) (3) with the definitionsp = y;, — vz R = 05(y1+u2), 7 =
m t1 _t27 Snrn = 0. ‘)[ (wl) + hnl (wQ)] Snrn =K l(wl) -
whereV,,,(r, ) is the matrix coupling coefficient (dependings;,;" (w2), A, (1,1) = 3, , A (1,1), and the coupling
ont as a parameter) defined according to matrix A7 (1,2) given by
Vnm(r,w,t) = —I,Ln,,n(r w t) Rovm AZ;’LW,? (172) = / d?’] nn/ €T + _777y17w17t1
Fon(W)km (W) o 2
where ‘v < 1 : >>
mm/ | T — 37, , W2, .
(@) = Fin() = Fim () g MY
Lo (1, 0, 1 :/ dz no(2)p(r, 2, )0z, 0)pm(z, w). As a consequence of (8), we obtain the conservation relation

M oo
(4) 4 / r _ - -
ir 221 i (T, p=0,R,7=0,w,w)dR =0.

Note that the parabolic approximation consists of considering
solutions in which waves are traveling only at small anglaa addition to (8), initial conditions ofr must be imposed.
to a particular direction. This direction, labeled hereahyis These conditions, dictated by the source, may be obtained by

in the horizontal. a matching procedure to give
The important correlation properties of an acoustic wave

that has traversed a random oceanic waveguide are described, . (1,2)|,—o =
by the second moment of the pressure field by

Bp(r1, 21,1 | 2, 22, t2) = (P(r1, 21,£1) P*(r2, 22, 2))

iﬁrfm%,(zo, W1)Pm (20, w2) 6(p) 6(R).
9

5 With regard to (8) the following point should be noted.
) If one is interested in long-range propagation, then only

where the asterisk denotes the complex conjugate. Inserti@noscillatory terms contribute appreciably to the system (8).

the field expansion from (1) into (5), one finds that So, in the limit of largez, (8) reduces to
2 : 2 2
By(r1, 21,11 | T2, 22,12) e— (97 L1 O N gy
00 00 - o Snnla aR 2£nrn apQ + 48R2 nrn,( b )
- / e / dws g(wi)g™(w2)T's (- | e rerfrtieete 1
-0 -0 = __[Ann(la 1) + Arnrn,(2a 2)]Fn,nl(1a 2)
(6) 2
wherel',(ry, z1,wy, t1 | ra, 22, ws, t2) is the total signal MCF + Z (1, 2) e (1,2)
defined as nm/
r. (r1,71,w1,t1 | ra, 20, wo, t2) Wherezn ms Means the summation over all couples of modes
o satisfying the synchronism condition
Qan 21, WI)¢WL(727w2)Fnrn(17 2)67,K,nm(u:).7:7 fy g Yy
n,m hn(wl)h’nl(WQ) Kn — Bm = Kn/ — Ry (10)
Ly (1,2) = (pr(1)p7,(2))- (7

Under these circumstances, the diagonal elements of the matrix
The labels 1 and 2 refer to two different horizontal positiof,,,,,(1,2) decouple from the off-diagonal elements, since at
points, times, and frequencies. Thus, the evaluation of the totak m the condition (10) will be justified when’ = m/. Note
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also that the behavior of the off-diagonal elemdnfs, (n # where

m) depends significantly on the type of oceanic waveguide.

In particular, for the waveguides having a quasi-equidistant I'va(1,2) =
spectrum of wavenumbers,, (10) can be satisfied for a large ipR i 1
number of modes, m andn’, m’ such thath —m = n’ —m’. X exp{Jr— - T”A <R2 + Zﬁ)}

In the opposite case, when the spectragnis nonequidistant, ST 207

only the terms withn = »’ andm = m' contribute to the is the solution of the transport equation in the absence of ran-

901/(7507 wl)%\(/:’o, w2)
8

double sum. dom inhomogeneities for a point source situated at coordinates
(0,z29), and the quantit)Dl‘ff describing the loss of wavefield
C. Asymptotic Expression for the Cross-Modal MCF coherence has the form

The set of coupled integrodifferential equations (8) is hard«s B TSN ' 38 /
to solve exactly, and numerical simulations are needed/ If o (1:2) = /0 del (4 (e 1| 2! 1) + day (e, 2] 2',2)
becomes too large, the numerical integration of these equations _ ngf(% 1], 2)] (13)
becomes impractical. However, in the quasi-classical approx-

imation, when the WKB formulas are valid fas,(»,w), it where

is possible to construct an analytical solution 1or,,.(1,2) 3 , oo oo

and to obtain a useful approximate representation for the tofak (z: 1 | #',2) = 27”“1/“2/ ds2 COS(QT)/ /daey dee.
MCF [9], [10]. ‘°° -

/ aBs 4
The approach employed uses the well-known properties of % Oy (B, 2270 (2)) cos <aeyp$—/>
the quasi-classical elemenits,, [see (4)], according to which cos x, (') cos xA(z') x
the corresponding coupling matrix is a function mainly of X cos(@gff(x’)),

difference indices of interacting modes [33], [34] N ) o
In writing (13), the following notation is used,,(ae ©, z)

2 [An/2 is the local spectrum of the sound-speed fluctuations taken
nn’ t)=— da’ “n ! “n )t o o
pn (7, 0,2) A,,,/O @ nolen (@)ulr, 2u(2"), 1) at & = &) (x), where the wavenumbesel;(x) has the
27 Ny components
X COS A—(n —n)z 5 5
g &\ (x) = (—0.5(tan x () + tan xx ())&, &8, &)

where4,, is the mode cycle distance, (x) is the modal ray
trajectory satisfying the equation

d?z, () 1 d
A2 :2a Eng[zn(x)]v

tan x&(x) = dz5(z)/dz is the inclination of a modal ray with
the pathz%(z) = 2,.(x — aA, /27), zl‘ff(a:) = 0.5(2%(z) +
Fon (W) 25 (x)), and £ () = 2%(z) — 23 (x).
k Equation (13) forDl‘ff(l,Z) is immediately recognized as
the phase-structure function (PSF) with the only difference
being that the integral in (13) is taken along a modal ray
dzn(z) _ 1 n2(2) — a2 = tan ya(a), instead of a usual geometric ray. The combinatigfi (z, 1 |
dx an 2/, 1) + diy(z,2 | 2/,2) — 2d,\(x,1 | 2/,2) can now be
nolz, ()] cos xn(z) = an regarded as a density of the PSF. Such a ray-modal analogy
) allows one to use in the calculation of coherence the well-
and x,(z) is the angle made by the modal ray and thg,,n results for the PSF obtained in the framework of the
horizontal at pointz. ray theory!

As a result, (8) can be regarded as a discrete convolutiongqations (6), (7), and (11)~(13) present in a closed form a
type equation. This circumstance together with the generatifigar| approximate solution to the problem of interest. For a
function technique allow us to reduce (8) to the equaliqflyen sound-speed profile and spectrum of the volume medium
which coincides formally with the equation governing the,cations, they give explicit rules for calculating both the
propagation of the MCF in free space. Then, the solution f@ge|ation function and the wavefield intensity in a random

the generating function can be found analytically. This has thgeanic waveguide. The restrictions on the theory are detailed
advantage of offering the possibility of obtaining a solutiog, 19] and [10].

in a closed form for the cross-modal MCF by the Fourier
inversion of the generating function to give D. Rough Surface Scattering Effects on the MCF

27 . . .
on(1,2) = Z/ /d, Ci[jei(ny)a-f—i(rnA),@FS,)(\?(LZ)' Equation (3) describes the coupling between the normal
v, 0 T

A, =

with

(2 mode amplitudes due to random volume irregularities of
refractive index. In certain environments, for example, when
the propagation takes place in an upper sound channel, sur-
Here,l“‘jf(l,2) is defined according to face interactions play a predominant role in acoustic signal
fluctuations. The formalism developed in [9] and [10] may be

(11)

1
Fgf(l, 2) = Fg)\(l, 2) exp [_§DS')‘\3(17 2)} (12) 1The methods for evaluating the PSF from a general internal-wave model
[35] were presented by Esswein and Flatte [36].
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extended to the analysis of acoustic coherence after long-raigéhe coherent field of theth mode,s, (w) = A, (1,1) is
multiple surface scatterings. This can be done as follows. the scattering coefficient, and
In the presence of a soft boundary = #(r,t), where ©
n represents random displacements of the ocean surface, in 7,,,,.(1,2) :exp{/ da’ AT (pi,m wl’w)}.
addition to the wave equation, the following condition on the 0 x
acoustic pressure field is imposed: For most oceanic applications, the characteristic correlation
P(r,n(r,),£) =0 lengthl,, of surface irregularities is much less than the typical
N8y 8) = mode cycle distance, i.el, < A,. In this case, elementary
Concerning the statistics of(r,¢), we assume that(r,t) acts of scattering occur at statistically independent ensembles
) 1 ) .
is a Gaussian homogeneous and stationary field with z&bthe surface, and (14) reduces to a simpler form [18]
mean and is characterized by the spatial-temporal correlation Trm(1,2) = (pa(D)p5 (2)), 1 # m. (15)
function B,
For the diagonal element§,,,.(1,2), a formal procedure
Bylp.m) = (. O)n(r + p,t + 7). similar to that given in obtaining (11) leads to the expression

For a small Rayleigh parameter, the explicit boundary coh3’l]

dition can be expanded at the mean ocean surfaee0 in 1 M 27 ‘ )
powers ofn to give [hn(1,2) = — Z Fglm(172)/ doy ¢~ in=m)a—$ D7 (1,2)
271' m=1 0
OP(r,z,t
Pr,0,8) = —y(r, 1) LT (16)

Oz 0
wherel'?, (1,2) are the self-modal functions in the absence

In the case considered, it is straightforward to show that the andom scattering and
normal mode amplitudes, (r,¢) in (1) formally obey the set

of stochastic equations (3) in which the coupling coefficients 7@l (0, w1)l, (0, w2) M ¢4 (0,w1) (0, w2)

i i m ? ) -
V,.m are now defined according to [17] Fom (o) oo (@2) e g (1) Fig(02)
4,0;; (O,W)(P;,,(O,CU) —ir (w)z * o0 o0
Vam(r,w, t) = — L r,t)e” "Fom ! _
(rw,t) = 3 o)) n(r, ) x /0 dx /_Oo dQ /_Oo deg, Iy (Ko — Fig, 88, 2)
where the prime denotes differentiation with respect to depth > [1 — oS <@px—/> COS(QT)Ci(’I—m)“:| .
Hence, rough surface and volume scattering effects can be &

formally described in the framework of a united approacliqations (15) and (16) together with (7) allow for estimation
and the particular scattering mechanism specifies the COnCrgigne Key correlation characteristics of the acoustic signal in

form of the coupling elements;,,,. Therefore, the equations o, nner sound channel where the rough surface scattering
governing the propagation of the MCF in a waveguide with &ats are important
rough surface are the same as before except that the coupling

matrix A™7'(1,2) must be replaced by

nn’

I1l. COHERENCEREDUCED SIGNAL PROCESSING

rn,rn,,(l 2) _ E [‘P%(valypk(oawl)‘P;rl(vaQ)QO;nr(O,wQ)] IN LARGE ARRAYS
B 2 [rn(wi)rn (01)Km(we) K (w2)]1/2 In this section, we give a short introduction to array pro-
dQ o= d i®p (.t ces_smg of partially coherent or s_patlally random S|gngls,
% /_Oo ¢ /_Oo & C n(Fm which is then supported (see Section V) by the numerical

results on array beamforming in deep-water environments
from the Northwest Pacific. Our analysis is aimed at examining

where ki, = 0.5[kn(w1) + Km(w2)] and F,(ae Q) is the the array gain_ and _its F:oherence-induceql loss for optimal
Fourier transform of the surface autocorrelation functiopé@mformers, including linear and quadratic.
B, (p, ) with respect top and .
A considerable simplification occurs for the waveguide8. Background
having a non-equidistant spectrum of wavenumbgrsin this ~ Generally, the problem of array signal processing is to
case, in the limit of large, the diagonal elements of the matrixjetect a signal source and/or to estimate unknown source or
I'vim(1,2) decouple from the off-diagonal elements in (8). As gansmission parameters. In both cases, one possible strategy
consequence, fdr,,,, atn # m, we have approximately [37] js to optimally process the outputs of array elements (sensors)
“ according to a predetermined statistical criterion. In this re-
Lrm(1,2) = {pn(DHP(2) Tom(1,2), - e #Em - (14) spect, thge ML pFrjocessor is well known to be of fundamental

.t ik (wi)—k_ L (w2))x
b e, Q) x e )

where importa_nce bgca_use it is optimal for a variety of detection and
) estimation criteria [7], [8].
(pa(r,w, 1)) = —10n(20,W) (in, (@) lrl—te, (@)=iF) Conventional array beamformers such as those used for
n ) 7

8z plane-wave source detection or bearing estimation in radar
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[38], [39] are derived under the key assumptions of a timek,,; is expressed by
invariant and spatially homogeneous transmission channel be-
tween a source and sensors. In long-range sonar applications, Ao =T = (T, +T,)7h
however, such model assumptions are generally unrealistic. . ) .
Therefore, two principal issues arise: 1) the effects of sign'é{fsre*_ I'; and I', are the Spf"‘t'al covariance ma_trlces of
propagation in a deterministically inhomogeneous channel 2§ Signal and noise, respectively, which are Elefmed for a
2) the effects of random inhomogeneities which perturb '&ndom vectox asl'; = (xx™) (the superscript*” denotes
regular wavefield and cause its coherence loss. conjugate transpose). y o
A survey of the literature reveals that several important Under the small-signal condition, which is a reasonable
developments have been made in these directions. Firsl‘?‘séumpt'on for Iong-rapge underwatgr acoustics and will be
technique of matched-field processing (MFP) was proposléﬁed in f_urther analysis, the_ detection perfor_mance can be
[40] and intensively studied as an effective generalization gfaracterized by the deflectiop of the detection statistic
plane-wave beamforming with applications to the source loc&l- 1he deflection, also known as the detection index or
ization in underwater channels and ocean acoustic tomogra@ffieralized SNR, is given by
[41]-[42]. Second, a general theory of array signal processing dis +n)) — (din
. . . : _ {d(s+m)) — (d(n))
in regular multimode/multipath channels was developed with q= (Bm)) — [dn)2)/2 (18)
applications to the detection problem in underwater acoustics
[43]. Third, the coherence effects on the array beampatterrnThe optimal small-signal matri..,. and deflectiong,
[44], [45] and the detection performance [3]-[6] were exare given, respectively, by
amined by the use of some models of plane-wave signal
coherence. Finally, more relevant models of the multimode Ay =T,'I,T ¢ (19)
signal co_herence were used to predict the array beampat_tern Gopt = [Tr (I‘glrs)Q]l/Q. (20)
degradation [46] and to compare SNR loss for several lin-
ear and quadratic beamformers, the optimal ones includedan important point is the fact that (19) and (20) can be
[12]-[14], [47], [48]. derived alternatively by directly maximizing the deflectign
Thus, recent developments of array signal processing [#ke (18)] for arbitrary signal statistics. Therefore, the choice
random-inhomogeneous multimode channels lay the theorgfthe maximum deflection criterion is quite reasonable in the
ical background of our study concerned with signal coherensguation of weak and unknown (non-Gaussian) signals in the

effects on large-array beamforming. Gaussian noise background, when the ML criterion is generally
not applicable to give the optimal processor [8].
B. Preliminary Formulations The components of (18) vary with the signal and noise

The problem of array signal processing under the coROWer (sincey itself depends quadratically on thg components
ditions of reduced signal coherence was clearly formulatéd@ndn;, j =1,2,---, N). Therefore, the deflection (18) can
and studied by Cox [3] and was then elaborated by oth@¢ used to compare directly the array gain and the gain loss
authors [4]-[6], [49], [50] on the basis of a general theorﬁpr dlff(_erent beamformers. The array_gaﬂhls deflned as the
of random signal detection [7], [8]. Following these worksdeflection, or the output SNR normalized to the input SNR
we outline below basic formulations for the optimal largedo, @nd the gain losg as the gain normalized to the number
array processing of partially coherent signals with empha§k aray elements
on small-signal consideration. T

. . : q r(T,) G

The signal of interest and the noise background are both G=—, q@= To(T,)’ 6= N (21)

assumed to be zero-mean, mutually uncorrelated, and Gaussian % H(n

random processes. The detection problem is formulated agie symbolTr(-) denotes the matrix trace). Concerning the
two-hypothesis alternative array gain definition, we point out that the input SNRis
defined here as the ratio of the signal and noise intensities
which are spatially averaged over the array length.

wheres andn are, respectively, th&/-dimensional signal and  The detailed predictions of the array gain and gain loss from
noise vectors of the Fourier-transformed data vextreceived (21) are of our primary interest to examine the large-array
by the N-element array. In the numerical simulations followsignal processors in long-range underwater environments.
ing in Section 1V, the components of the signal vector are

exactly the acoustic pressures from (1), iss.= P(r;, z;,t), C. Array Beamformers

j=152--N. ) . A general structure of a quadratic beamformer (QBF) can
In general, the data vector can be processed in quadratigys jescrined clearly using the processor makigl7) in fac-
form to obtain the detection statistit by torized form asA = WW+, whereW is an(N x R) weight
d=xT Ax* (17) matrix consisting of vector-rowsv, (p = 1,2,---,R,1 <
R < N). This structure consists, therefore, of the matrix filter
whereA is an arbitrary N x N') matrix and the superscript® W followed by anR-channel quadratic processor. Its weight-
denotes transpose. For the ML criterion, the optimal matrsquare-sum outpuiqrr is obtained directly as guadratic

X=s+n OF XxX=n
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function of the input vectox by
R o wy
vapr =d = W' = 3 |wix|" (22)
p=1 Tg ws
The output SNRyqpr is obtained from (18) by . D Yime | d
Te(WIT ,W*)
= . 23
QBY = 1T (WTT, W )2]L/2 (23)
Each partial channel of QBF (22) is a linear beamformer N Jwy
(LBF) characterized by the corresponding weight vectgr ;
(p=1,2,---,R). To distinguish from QBF, the LBF weight- &:Eéggg
sum outputyr gr is obtained as éinear function of the input
vectorx, and the detection statistitas a squaregrgr by @
yrr = wix, d=|wix|? (24) 1
x
wherew is an arbitrary(IV x 1) weight vector. The output — L » |
SNR ¢rpr is given by the following ratio: | I |
T2
wll ,w* > 2
GLBF = — 71 " (25) [ |2
w rnw I |yQBFy d
Thus, the LBF structure gives a vector filtar followed by . W | Z |

a single-channel quadratic detector. This is a conventional
choice for array signal processing with numerous applications ’ ’ l I
in radar and sonar. . R [P
General structures of the LBF and QBF, as they follow >~ | |

directly from (24) and (22), respectively, are shown in Fig. 1.
MATRIX L - — —/J

Comparing these structures, we conclude that the QBF
scheme is an incoherent (squared) combinatiomzgbartial FILTER, QUADRATIC PROCESSOR
LBF’s and reduces to the linear scheme in the particular case )
of R = 1. A choice of the weight vectow and matrixW in ) ) )
the LBF and QBF schemes, respectively, directly determin@'g' 1. A general structure of (a) linear and (b) quadratic beamformers.
the output processor performances for given signal and noise
covariance matrices. length V. as compared to the coherence length(where N,

We turn now to the optimal quadratic and linear beanis the dimensionless coherence length expressed in element
formers which are then used in Section IV to examine thgpacing units), i.e., with the increase of thgN.. ratio.
coherence-induced effects on large-array signal processing irDf particular interest is the optimal linear processor which

deep water. exhibits the ultimate coherence-induced limitation for all pos-
For the optimal QBF derived from (19)-(22), the partiaible LBF’s [in other words, for all possible vectoss in
weight vectorsw, and SNRg,,,; are given by (24) and (25)]. Its weight vector and SNR are given by the

. 12 following eigenvalue—eigenvector problem:
w, = A},/Ql“zlmp, Gopt = {Z Q§} (26) vy =T,'Tv,, p=1,2,---,7r =rank(T,). (28)
p=1

. . The largest eigenvalug gives the maximum SNRgF (25),
wherg Ap and m;, are the e!genvalues and eigenvectors %Fnd the corresponding eigenvectargives the optimal weight
the signal matrixI',, respectively, and the quantitieg are

. . vectorgrer = ¢1, Wopt = V. Moreover, the eigenvalueg,
determined below. The eigenvalugg are assumed to be; 28) qi :
. th timal SNR,,, 20) and (26)].
ordered and normalized by rom (28) give the optima Rop: [s€€ (20) and (26)]

It follows from (26) and (28) that, in the case of the rank-

N one signal matrix emphasized above, both the optimal QBF
AL > A2 > - A >0, 7 =rank(T,), ZAP =1. (27) and LBF reduce to the steady-state adaptive beamformer [38],
p=1 [39] which is, therefore, the optimal scheme to process the

As follows from (26), the numbeR of partial LBF's in the perfectly coherent signal against the noise interference. Its

optimal QBF is exactly the signal rank Therefore, the linear weight vector is given by

structure can be optimal if and only if the signal matix is w* =T 's. (29)
the rank-one matrix. This conclusion is extremely important

for our study because the signal coherence and the signal raihis well-known equation derives the noise prewhitening
are intrinsically interrelated: the rankincreases with the array beamformer followed by the matched-signal filter.
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For the purpose of emphasizing the signal coherence effect,g g
we point out a particular case of spatially white noise. In
this case, the optimal QBF scheme is the incohergpt
weighted combination of the partial filters matched to the 0.5
signal eigencomponents\,,m,) from (26), while the opti- —
mal LBF matches the first (most powerful) eigencomponeé
(A1,m;). Therefore, an additional gai®) of the optimal < 0
QBF over the optimal LBF is determined only by the sign
eigenvalues

0.0 T

1.0p E

Depth (km)

- 1/2
GLBF AL ’ - T

2.0 1 A1
1.45 1.47 1.49 1.51 0 5 10 15

Sound Speed (km/s) Buoyancy Frequency (s7')x10?

In practice, only the largest eigenvalues and an “effective”
rank r.g (defined as their number) are of real importance @) (b)

for estimation of the quadratic processor performance, whit@. 2. Upper parts of (a) sound-speed profiles and (b) buoyancy distribution
the contribution of the higher order eigenvalub,,s(with the from the Northwest Pacific. The profiles are: summer (1), winter (2).
numbersp > r.g) can be ignored.

Thus, the following characteristics of the received signal 2) Adaptive PWBF: This is the PWBF with noise interfer-
are of the greatest importance with application to the optimghce prewhitening [38], [39]. Its weight vectevapw [see
large-array processors: the first (largest) eigenvaluethe also (29)] is given by
effective rankr.r, and the quadratic gai@@ from (26)—(30). -

All of them are determined by the signal eigenvalues and, warw = I wew (33)

therefore, are intrinsically interrelated. _ and its SNRgpw is obtained by direct substitution f spyw
The physical parameter related to the signal eigenvaluesig, (25).

the ratio N./N which can be estimated by direct measure- 3 Optimal LBF: This beamformer was given above:
ments using the array. For the case of a coherence-degradec?
signal, N./N < 1, the following estimates are of interest: Wopt = Vi, GLBF = Q1 (34)

1/2 whereg; andv; are, respectively, the largest eigenvalue and
Nc N 1/2 N . .

M~ =2 Tep~ oy Qrrf ~ | — . (31) the corresponding eigenvector from (28).
N Ne N 4) Optimal QBF: This is a full-optimal beamformer from

19), (20), (26
The general formulations outlined above have been effe(c- ). (20). (26)

tively exploited by several authors to simulate the optimal WoptWSLpt = Aopts  9QBF = opt- (35)

processors and to consider suboptimal (quadratic and Iinearb . i . .

techniques by the use of exponential-type models for the sign? bV|0u§Iy, _the first three techmques_follow from the Imear_

MCF [3][6], [49]. In our papers [47], [48], [50], the theorys ructure in Flg. 1(a) and the last technique from the quadratic

has been developed by incorporating a model of multimo&ttsrUCture in Fig. 1(b).

signal coherence and simulations of the modal covariance

effects on array beamforming. Two intrinsic factors, the modky- PREDICTIONS OF THEACOUSTIC MCF WITH APPLICATION

covariances and the mode orthogonality, were shown to affect 1O LARGE-ARRAY PERFORMANCE DEGRADATION

mutually optimal array beamforming and detection perfor- In this section, we give some illustrative examples to exhibit

mance. For example, the signal ranls considerable; ~ M, numerical predictions of: 1) the acoustic MCF for the given

if the signal-carrying modesM{ is their number) are weakly sound-speed profile and spectrum of oceanic inhomogeneities

correlated and the array length is sufficient for their shapaad 2) the coherence-induced effects on the array beampat-

orthogonality or spatial resolution. tern and SNR gain for both horizontal and vertical array
In this paper, the effects of ocean acoustic coherence on tmmfigurations.

array gain are compared for the following four beamforming The two sound-speed profiles chosen for our calculations are

techniques. shown in Fig. 2. They represent summer and winter seasonal
1) Plane-Wave Beamformer (PWBFThis is the simplest averages and buoyancy frequency in the Northwest Pacific at

processor of the steered array. The entries of its weight veclatitude 45N.

wpw are given by The sound scattering in the summer channel is caused

mainly by volume fluctuations in the index of refraction and,
wpw(j) = exp[—ikd(j — 1)sing], j=1,2,---,N (32) in the winter channel, by contrast, by a stochastically rough
surface. To illustrate the corresponding effects of random

where/ is the steering angle (arbitrary). The steering angle Wwlume and surface scattering on acoustic transmission, we

the only parameter of the PWBF which is changed to contrekploit the Garrett—-Munk spectrum [35] for internal waves and

the output SNR and gain. the Pierson—Moskowitz spectrum [51] for surface wind waves.
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The following set of parameters is used: source frequency 1g
fo = 250 Hz, distancex = 250, 500, 1000 km, source

depthzy = 50 and 100 m, the horizontal array depth or the = 45
first element depth for the vertical array is 300 m, and the &
interelement distance for the arrays considered is 3 m. &Eé 0.6
&
A. Evaluations of the Acoustic MCF E 0.4
z o
We begin with observing the effect of medium fluctua- ¢

tions on the sound wavefield coherence. The calculations aresS ¢.2
concerned with the monochromatic case, when the frequency
spectrumg(w) = &(w — wp).? 0.0 L . ! s L .

The coherence degree of the received signal is characterized 0 100 200 300 400 500 600 700
by the correlation coefficient Horizontal Scparation (m)

(@

C(ry, 21,1 | ra, 22,t2)

Is(r1,2z1,t | r2, 22,t2) 1o " ' ' '
\/Fs(rl,zl,tl | rl,Zl,tl)FS(I‘z,ZQ,tQ | I‘z,ZQ,tQ) -
= 0.8F .
(36) g
&
where we have dropped the argument for brevity. This é‘:; 0.61 a
function is fully determined by solutions of the eigenvalue <
problem [see (2)] and the RTE [see (8) and (9)]. % 0.4f .
1) Volume Scattering by Random Internal WavésFig. 3, T
we plot the magnitude of the correlation coefficient from (36) g 0.2} 4
in the case of transverse horizontal and vertical separations. 9
Calculations were carried out for the summer profile (curve ' . )
1in Fig. 2) using the results of the work of Esswein and Flatte 0 20 40 60 80 100
[36] for the phase-structure density from internal waves. It Vertical Scparation (m)
is evident from this figure that the characteristic coherence (b)

length, which is determined by the half-power decay of thgg. 3. The normalized MCF of (a) horizontal and (b) vertical separations in

correlation coefficient, decreases monotonically as the rarifesummer environments at various ranges: 1: 250 km; 2: 500 km; 3: 1000
increases km. The source frequency is 250 Hz, the source depth is 50 m, and the depth

. of the horizontal array and the first element of the vertical array is 300 m.
2) Rough Surface Scattering by Fully Developed Sefss:

was mentioned previously, surface interactions play a predom- tal N Based on th it d trate i
inant role in acoustic signal fluctuations, when the propagati Fntal parameters. Based on these results, we demonstrate in

takes place in an upper sound channel (curve 2 in Fig. 2). ctions IV-B and -C that the long-range coherence loss causes

example, in the North Pacific, such situations exist perhar':j'@n'f'cant degradation of the array beampattern and gain.

50% of the time in the winter.

For the case considered, the corresponding graphs for Br-
relation functions are shown in Fig. 4. There is an additional First, we give the results for the horizontal array configura-
environmental parameter, wind speed which varies here tion. In this example, the source is located at deptk= 100
from 10 to 15 m/s. Obviously, the increase of the wind speed, distancex = 1000 km, and directiony = 30°.
leads to the increase of rough surface scattering and coherendeor the main purpose of evaluating the signal coherence
loss. effects, the simulation is focused on the situation of a spatially

For moderatev (v < 13 m/s), the MCF of vertical sep- white noise background, i.el;,, = I in the equations from
aration behaves in an oscillatory fashion which indicateSection Il [ is the identity matrix). For calculations of
that the scattering is weak, so that there can be a ratilee signal matrixI';, we exploit the respective MCF's of
high degree of coherence even at relatively large separathrizontal separations.
of the observation points. It should be emphasized that theFig. 5 shows the mean beampattern of the 256-element
normalized MCF tends asymptotically to the coherence pphased array as a function of the steering anglén the
rameterl, = [(P(r, z,1)}|?/{|P(r, z,t)|*). The characteristic (a) summer and (b) winter channels, respectively (curves 1
coherence length time and in this case depends on wind speettespond to a regular channel in both cases).
and is~10 m forv = 10 m/s. The signal coherence loss is seen to lead to considerable

Thus, the signal coherence depends substantially on thegradation of the beampattern. This fact is generally well
receiving array configuration and on the source and envirdsrown [44], [45], but the pronounced feature is the main

2Consi . . _ , lobe angular displacement caused by modal broadening of

onsideration of the nonmonochromatic case will be the subject of

separate paper aimed at studying temporal filtering of narrow-band acouéﬁne Signal_ angular. _SF_)eCtrum' This displacement Iead§ to ex-
pulses in a random oceanic waveguide. tremely high sensitivity of large-array PWBF to multimode

Horizontal Array Gain Limitations
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Fig. 4. The normalized MCF of (a) horizontal and (b) vertical separations fig. 5. Beampattern of the horizontal 256-element array in the (a) summer
the winter environments at the range of 500 km and various surface roughnesgi (b) winter environments in the absence (1) and in the presence (2) of
1:v =10 m/s; 2:v = 13 m/s; 3:v = 15 m/s. The source frequency is 250 random inhomogeneities. 2a:= 10 m/s; 2b:v = 13 m/s; 2c:v = 15 m/s.

Hz, the source depth is 100 m, and the depth of the horizontal array and e arrow indicates the angle of arrival.

first element of the vertical array is 300 m.

propagation even in a regular channel. Therefore, an adaptive
correction of the main lobe direction is required to adjust the — —2f
PWBF steering angle to the angular response maximum.

Fig. 6 shows the gain loss[see (21)] as a function of the
number N of the array elements in the summer channel for
the source directiorx = 30°.

A considerable degradation of the PWBF gain (foe «,
see curve 4) is caused primarily by the main lobe displacement
emphasized above. Note that the steep increase of the gain loss’ ~

ay Gain Loss (dB

§(N) for N = 50 corresponds to the decreasing g&iQN). 1ok . . , , . , ) .
The latter function achieves the maximum valie~ 15 dB 32 64 96 128 160 192 224 256
for N ~ 50 and shows a gradual decrease of the gain for larger Number of Elements

arrays. It is seen that the Qng.u.lar correction required for SUgl 6. Horizontal array gain loss in the summer environments as a function
array lengths leads to the significant gain increase up5el0 of the number of hydrophones. 1: optimal QBF; 2: optimal LBF; 3: PWBF

dB and achieves an almost LBF performance (see curves 2 #fffj angular correction; 4: conventional PWBF.

3). On the other hand, this angular correction of PWBF does

not entail any increase in computational complexity and h@sat amounts up te-10 dB. From Fig. 7(b), however, two

the essential advantage of environmental robustness. essential conclusions concerned with fully developed wind
Fig. 7 shows the same functidiiV) in the winter channel waves follow. First, all the linear beamformers, the optimal

for the same angle. = 30° and two values of wind speed (a)LBF included, degrade in comparison with the optimal QBF

v = 10 m/s and (b)v = 15 m/s. The curves in Fig. 7(a) with the increase of wind speegthe additional quadratic gain

are generally similar to those in Fig. 6 and illustrate, id) [see (30)] is about 3 dB for the array length~ 100 and

particular, the angular dependence of the PWBF efficiengycreases gradually withv. Second, the angular correction of
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Fig. 7. Horizontal array gain loss in the winter environments as a function of
the number of hydrophones for (a)= 10 m/s and (b = 15 m/s. 1: optimal Fig. 9. Weight magnitudes for the 256-element horizontal array in the winter
QBF; 2: optimal LBF; 3: PWBF with angular correction; 4: conventionaknvironments. 1v = 10 m/s; 2:v = 13 m/s; 3:v = 15 m/s.
PWBF.

close to the phase distribution of the corrected PWBF array

PWBF does not entail a significant effect on the array gain. A
physical reason is rather clear, namely, the coherence length
N. is small compared to the array lengfi, N./N < 1
[see Fig. 4(a)]. This leads to: 1) an increase of the signal
rank » and, therefore, to an increase of the “gap” betweemhere 8.« is the direction of maximum angular response
the optimal LBF and the QBF performances according to (30pm Fig. 5. The weight coefficients differ only by their
and (31) and 2) almost complete degradation of the large-arrapgnitudes. For example, Fig. 9 shows the weight magnitudes
beampattern [see Fig. 5(b)] and to consequent vanishing of faethe 256-element array in the winter channel for three values
angular dependence of the PWBF performance. of wind speed. These nonuniform windowing shapes entalil

To clarify the difference between the summer and wint&me broadening of the optimal beampattern main lobe in
conditions in more detail, we show in Fig. 8 the largestomparison with the PWBF main lobe, which is caused by
eigenvalues (27) of the covariance matliy for N = 256 fluctuations of the modal angles of arrival.
anda = 30°. In the summer ChanneL the 5igna| eigenva|ues ThUS, we show that the coherence-induced effects on the
are seen to decrease rapidly with numpgandregz ~ 3. In horizontal array beampattern and gain are significant, espe-
the winter channel, on the contrary, the eigenvalue spectr@ially in the winter environments of fully developed wind seas,
for v = 15 m/s is nearly uniform for the first numbers andind depend essentially on the beamforming technique used.
Tef ~ 1.

It is also of interest to compare in detail the array weighfs. Vertical Array Gain Limitations
w(j) for the PWBF with the angular correction and for the In this example, the source is located at depth= 50
optimal LBF. These beamforming techniques, as is seen fram(for the summer channel) o, = 100 m (for the winter
Figs. 6 and 7, achieve almost the same gain performanckannel) and distance = 500 km.
The reason is that the phase distribution of the first signalThe examination of vertical array processors includes also
eigenvectorm; (which gives the weight vector for optimalmodeling of the ambient ocean noise. We assume, therefore,
LBF in the case of spatially white noise [see (28)] is verthat the noise at the array inputs is the sum of spatially white

arg(mq(j)) ~ —kd(j — 1) sin Bpax
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) . . Fig. 11. Modal spectra of the signal (1) and ambient noise (2) in the (a)
Fig. 10. Beampattern of the vertical 64-element array in the (a) summer a§l&nmer and (b) winter (at = 15 m/s) environments. Modal spectra have
(b) winter environments in the absence (1) and in the presence (2) of randggan, normalized to the area under their respective curves.
inhomogeneities. 2a» = 10 m/s; 2b:v = 13 m/s; 2c:v = 15 m/s.

To calculate the signal matrik,, we exploit the respective
MCF'’s from Figs. 3(b) and 4(b).

We examine here the array gath[see (21)] instead of the
gain lossé. The reason is that modal noise prewhitening by
the use of special techniques of matrix inversion [see (26),

ambient noise, and is a relative level of the white noise The(28) and (33)] leads to some additional gain. This additional
: : “noise” gain may be essential only if the modal noise is much

‘vertical” matrix T, is obtained from a widely used model ore intensive in comparison with the white noise. It is this
of the ocean surface-generated noise [43], [52], according% P '

which the noise is generated by uncorrelated sources w >C that interests us in particular, so we suppose —20
homogeneous spatial distribution over the ocean surface. n (37). .
treatment is also based on the normal mode approach, so w ig. 10 shows the 6_4-e|ement array beampatterns in the
interpret the ambient noise in (37) as the modal noise. As w} summer and (b) winter (b) channels. The beampaiterns

previously estimated in [53], the modal noise effect on tH8 ZOth _f|gr]]ures are plotteg for Ic ompansoln of regula(rj and
vertical array gain depends inherently on “overlapping” of th@ndom-inhomogeneous channels (curve corresponds (o a
signal and noise modal spectra. regular channel). The signal coherence loss is seen to lead to

To calculate the entries of the modal noise covariance matfixconsiderable degradation of the array beampattern, similar

Lan(i,j) (3,5 = 1,2,---, N), we use the following equationto the case of a large horlzontal_ array (see Fig. 5). In both

. e channels, however, the maximum angular response cor-
o) the channels, h th gular resp

responds to transverse propagation because the signal modal
spectrum has a maximum in the lower order modes (see also
curve 1 in Fig. 11).

Fig. 11 shows the modal spectra of the received signal and
the ocean noise in the (a) summer and (b) winter channels.
where ¢,,(z) and «,, are, respectively, the modal deptiComparison of these two cases shows that they differ es-
functions and modal wavenumbers from (1). sentially. In the summer channel, the noise power spectrum

noise and ambient ocean noise
T, =0l+T.m (37)

wherel is the identity matrixI',,, is the covariance matrix of

M

Lanlid) = 3 o ez (@9
=1 m m

m
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Fig. 12. Vertical array gain in the summer environment as a function of thed- 13. Vertical array gain in the winter (at= 15 m/s) environment as
number of hydrophones for (a) white noise and (b) modal noise. 1: Optm%functlon of the number of hydrophones for (a) white noise and (b) modal
QBF; 2: optimal LBF; 3: adaptive PWBF; 4: PWBF. noise. 1: optimal QBF; 2: optimal LBF; 3: adaptive PWBF; 4: PWBF.

has a smooth maximum in the higher order. = 100) cases of the noise background. For the modal noise, the

modes, so the signal and noise are localized mainly in differedftin is seen to decrease (down to abed dB) for all the
groups of modes. This fact leads to a general possibmagamformer_s owing to simila_rity of the signal an_d noise modal
of highly efficient modal noise suppression, which obviousl§Pectra, which was emphasized above [see Fig. 11(b)]. Only
corresponds to the particular case of transverse signal recepfféf OPtimal large-array QBF achieves in this case a significant
and modal interference reception in the sidelobe domain. TH&IN G ~ 5-7 dB. Moreover, the PWBF does not achieve
opposite situation is realized in the winter channel owing @Y pronounced gain for all array lengths, so this technique is

the noise power localization in the lower order modes. Thﬁee_zrﬁhectlveh unde_r these <;orrl]d|t|ons_. | .
difference leads to a dramatic effect on the array gain [53ll us, the estimates of the vertical array gain vary, essen-
which is illustrated below. tll h bient Noi dal t M th
Fig. 12 shows the array gain functigA(N) in the sum- aiso on he ambient noise modal spectrum. Vioreover, [the
) : . latter dependence can be even more pronounced and may lead
mer channel for the (a) white noise and (b) modal noisé . . . L
. ) . . 0 a dramatic effect, especially in the case of similar modal
backgrounds. Since the main lobe is not displaced from the : . :
N o . (angular) spectra of the signal and ambient noise.
transverse directior{3,.x = 0°), we plot only three gain
functions in Fig. 12(a). A considerable increase of the gain in
the case of modal noise (as compared to the case of white V. DISCUSSION AND CONCLUSIONS
noise) is about 10-20 dB for all the beamformers. The most|n this section, we conclude our study of the coherence
significant increase is seen to be achievable for the beamforgffects on large-array signal processing in long-range deep-
ing techniques which prewhite the modal noise. A consideraligiter environments and summarize the key results obtained.
gain increase for a conventional PWBF is also due to angularThe MCF is of great importance for understanding the
selection of the signal by narrowing the beampattern main lobgtistical behavior of ocean acoustic transmission. It was
and increasing the number of array elements. shown how to efficiently derive an asymptotic expression for
Fig. 13 shows the array gain functi@gi(V) in the winter the MCF in terms of modal structure of the acoustic pressure
channel for the wind speed = 15 m/s and the same two field using the RTE. The method for solving the corresponding

lly depending not only on the signal coherence loss but
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matrix equation is based on a combined use of the WKB The PWBF technique was shown to be the most “sen-
approximation and the generating function technique. Tiséive” to factors 1)-3). This means that the PWBF gain
procedure elaborated on here allows one to reduce the problean dramatically vary as a function of the source and en-
of the wavefield coherence calculation in a refractive soumitonmental parameters. Of primary importance is the fact
channel with random volume inhomogeneities to the analthvat adaptive correction of the steering angle can lead to an
gous problem in free space. The method employed was aéssential improvement of the performance. For example, for
extended to include rough surface scattering effects. The apfie horizontal array length of abouf0), this gain increase
cation is illustrated by numerical computation of the expectedas demonstrated to be up %10 dB. The possibility of
acoustic coherence for deep-water ocean environments unueintaining the PWBF efficiency is firmly restricted, however,
the assumption that the random field of either internal wavbyg the cases of: 1) “residual” signal coherence over the full
or fully developed seas is the dominant source of transmissiamay length and 2) partial separation of the modal spectra of
fluctuations. the signal and noise interference. These two cases are generally

Rough surface scattering was found to cause the mastiependent of each other but mutually affect the large-array
significant effects on ocean acoustic coherence. In particulgain.
as observed in the results of Section IV, for a source of 250An obvious advantage of the PWBF techniques is their
Hz and at a range of 500 km, the horizontal coherence lengidmparative simplicity. They do not require a preprocessing
varies from~400 m (in the summer conditions) to40 m (in procedure to estimate the signal eigenspace, and their perfor-
the winter conditionsy = 15 m/s), and the respective verticalmance can easily be controlled by reforming the beampattern,
coherence length varies from10 m to~5 m. including adaptive angular correction of the main lobe.

We have presented calculations of internal wave and surfacés distinct from the PWBF, the optimal processing
wind wave effects. Of course, other ocean processes are dighniques require the signal eigenvalue—eigenvector analysis.
possible. For example, the ocean variability due to mesoscdfe synthesize the optimal LBF and QBF schemes, one
eddies or mean currents will cause acoustic variations but wikeds, therefore, to estimate the signal eigenspace in the
not affect the coherence we are studying at long ranges amise background. The full-optimal QBF reduces significantly
low frequencies (see, e.g., [54]). the coherence-induced gain loss, however, at a cost of

Measurements of horizontal and vertical coherence haWereased processor complexity; the number of its partial
been carried out in many experiments. Ample data have begeight-sum channels is equal to the number of the largest
collected in the book by Stefanick [55]. The majority of theignal eigenvalues, as compared to the linear beamformers
data indicates that typical measures of coherence lengths \which require only one weight-sum channel. The reason for
10 to 100 wavelengths for horizontal separations and lefsdlowing such a complicated scheme is only the long-range
than 10 wavelengths for vertical separations. Our respectisignal coherence degradation, namely, the small values of the
calculations are in good agreement with these experimentalio N./N < 1, or, in other words, the case ofy > 1.
results. Under these conditions, the additional quadratic gaipsee

Thus, we can conclude from this study that the RTE teckB0)] is considerableq) ~ 7’613[/[2, and its value was shown to
nique is a powerful tool for calculating acoustic propagatiobe ~3—6 dB.
in a medium where random scattering effects are impor-Therefore,a priori estimation [see (31)] is the key point
tant. It is clear, however, that more accurate oceanographicthe optimal processor performance/complexity analysis in
measurements taken simultaneously with acoustic measub®e coherence-degraded situations. The most essential and
ments will be required for comparison with our theoreticgironounced feature of the optimal QBF is the increase of
expressions. More recent experiments have been condudtel gain functionG(V) for all array lengthsN without a
under the SLICE89 and the ATOC projects, for which dé'saturation” plateau. The latter, in turn, is an intrinsic feature
tailed environmental data are available. The application of the optimal LBF.
the multimodal RTE to these data will be another interesting In conclusion, we summarize that: 1) the large-array gain
test of the technique. The RTE method could also be applipdrformance in long-range ocean environments is inherently
to treat: 1) combined effects of volume and rough surfadigited by the spatial coherence of multimode acoustic signal
scattering: 2) pulse signal propagation; and 3) the MG#d 2) the full potential of large arrays will not be realized
behavior in shallow water where bottom interactions amnless the coherence characteristics are known in detail and

essential. incorporated into signal processing.
The effect of oceanic fluctuations on the received signal
coherence was shown to be of the greatest importance in appli- REFERENCES
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